1 |
PINEDO J, IBÁÑEZ R, LIJZEN J P A, et al. Assessment of soil pollution based on total petroleum hydrocarbons and individual oil substances[J]. Journal of Environmental Management, 2013, 130: 72-79.
|
2 |
刘五星, 骆永明, 滕应, 等. 我国部分油田土壤及油泥的石油污染初步研究[J]. 土壤, 2007, 39(2): 247-251.
|
|
LIU Wuxing, LUO Yongming, TENG Ying, et al. A survey of petroleum contamination in several Chinese oilfield soils[J]. Soils, 2007, 39(2):247-251.
|
3 |
潘云飞, 唐正, 彭欣怡, 等. 石油烃污染土壤微生物修复技术研究现状及进展[J]. 化工进展, 2021, 40(8): 4562-4572.
|
|
PAN Yunfei, TANG Zheng, PENG Xinyi, et al. Research status and progress of microbial remediation technology for petroleum hydrocarbon contaminated soil[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4562-4572.
|
4 |
FALCIGLIA P P, GIUSTRA M G, VAGLIASINDI F. Low-temperature thermal desorption of diesel polluted soil: influence of temperature and soil texture on contaminant removal kinetics[J]. Journal of Hazardous Materials, 2011, 185(1): 392-400.
|
5 |
SONG W, VIDONISH J E, KAMATH R, et al. Pilot-scale pyrolytic remediation of crude-oil-contaminated soil in a continuously-fed reactor: treatment intensity trade-offs[J]. Environmental Science & Technology, 2019, 53(4): 2045-2053.
|
6 |
HAN Z, JIAO W, TIAN Y, et al. Lab-scale removal of PAHs in contaminated soil using electrical resistance heating: removal efficiency and alteration of soil properties[J]. Chemosphere, 2020, 239: 124496.
|
7 |
ALTENBURGER A, BENDER M, EKELUND F, et al. Steam-treatment-based soil remediation promotes heat-tolerant, potentially pathogenic microbiota[J]. Environmental Technology, 2014, 35(6): 773-780.
|
8 |
LOMINCHAR M A, SANTOS A, MIGUEL E D, et al. Remediation of aged diesel contaminated soil by alkaline activated persulfate [J]. Science of the Total Environment, 2018, 622/623: 41-48.
|
9 |
OURIACHE H, ARRAR J, NAMANE A, et al. Treatment of petroleum hydrocarbons contaminated soil by Fenton like oxidation[J]. Chemosphere, 2019, 232: 377-386.
|
10 |
LI Y T, LI D, LAI L J, et al. Remediation of petroleum hydrocarbon contaminated soil by using activated persulfate with ultrasound and ultrasound/Fe[J]. Chemosphere, 2020, 238: 124657.
|
11 |
MENA Esperanza, RUIZ Clara, José VILLASEÑOR, et al. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil[J]. Journal of Hazardous Materials, 2015, 283(11): 131-139.
|
12 |
SON Y, CHA J, LIM M, et al. Comparison of ultrasonic and conventional mechanical soil-washing processes for diesel-contaminated sand[J]. Industrial & Engineering Chemistry Research, 2011, 50(4): 2400-2407.
|
13 |
杨建刚, 刘翔, 余刚, 等. 非离子表面活性剂溶液中多环芳烃的溶解特性[J]. 环境科学, 2003, 24(6): 79-82.
|
|
YANG Jiangang, LIU Xiang, YU Gang, et al. Characteristics of polycyclic aromatic hydrocarbons dissolved in nonionic surfactants[J]. Environmental Science,2003, 24(6): 79-82.
|
14 |
LU M, ZHANG Z, SUN S, et al. Enhanced degradation of bioremediation residues in petroleum-contaminated soil using a two-liquid-phase bioslurry reactor[J]. Chemosphere, 2009, 77(2): 161-168.
|
15 |
DIAZ-MARTINEZ M E, ALARCON A, FERRERA-CERRATO R. Casuarina Equisetifolia (Casuarinaceae) growth in soil with diesel and application of biostimulation and bioaugmentation[J]. Revista De Biologia Tropical, 2013, 61(3): 1039-1052.
|
16 |
刘少卿, 姜林, 黄喆, 等. 挥发及半挥发有机物污染场地蒸汽抽提修复技术原理与影响因素[J]. 环境科学, 2011, 32(3): 825-833.
|
|
LIU Shaoqing, JIANG Lin, HUANG Zhe, et al. Principles and influencing factors of steam extraction and remediation technology for volatile and semi-volatile organics contaminated sites[J]. Environmental Science, 2011, 32(3): 825-833.
|
17 |
HALMEMIES S, GROENDAHL S, ARFFMAN M, et al. Vacuum extraction based response equipment for recovery of fresh fuel spills from soil[J]. Journal of Hazardous Materials, 2003, 97(1/2/3): 127-143.
|
18 |
BACIOCCHI R, BONI M R, D'APRILE L. Hydrogen peroxide lifetime as an indicator of the efficiency of 3-chlorophenol Fenton’s and Fenton-like oxidation in soils[J]. Journal of Hazardous Materials, 2003, 96(2/3): 305-329.
|
19 |
MA J, XIA X, MA Y, et al. Stability of dissolved percarbonate and its implications for groundwater remediation[J]. Chemosphere, 2018, 205: 41-44.
|
20 |
MIAO Z W, GU X G, LU S G, et al. Perchloroethylene (PCE) oxidation by percarbonate in Fe2+-catalyzed aqueous solution: PCE performance and its removal mechanism[J]. Chemosphere, 2015, 119: 1120-1125.
|
21 |
BUNDY J G, PATON G I, CAMPBELL C D. Combined microbial community level and single species biosensor responses to monitor recovery of oil polluted soil[J]. Soil Biology and Biochemistry, 2004, 36(7): 1149-1159.
|
22 |
张亚楠, 杨兴伦, 卞永荣, 等. 化学提取法表征污染土壤中PAHs老化规律和蚯蚓富集特征[J]. 环境科学, 2015, 36(12): 4582-4590.
|
|
ZHANG Yanan, YANG Xinglun, BIAN Yongrong, et al. Characterization of PAHs aging and earthworm enrichment characteristics in contaminated soil by chemical extraction method[J]. Environmental Science, 2015, 36(12): 4582-4590.
|
23 |
STOKES J D, WILKINSON A, REID B J, et al. Prediction of polycyclic aromatic hydrocarbon biodegradation in contaminated soils using an aqueous hydroxypropyl-beta-cyclodextrin extraction technique[J]. Environmental Toxicology and Chemistry, 2005, 24(6): 1325-1330.
|
24 |
张金永, 叶倩, 王明新, 等. 机械化学法修复柴油污染土壤的效率、产物及影响[J]. 环境科学学报, 2021, 41(3): 1058-1065.
|
|
ZHANG Jinyong, YE Qian, WANG Mingxin, et al. Remediation of diesel-contaminated soil by mechanochemical treatment: efficiency, products and impacts[J]. Acta Scientiae Circumstantiae, 2021, 41(3): 1058-1065.
|
25 |
JIANG W, JOENS J A, DIONYSIOU D D, et al. Optimization of photocatalytic performance of TiO2 coated glass microspheres using response surface methodology and the application for degradation of dimethyl phthalate[J]. Journal of Photochemistry & Photobiology A: Chemistry, 2013, 262: 7-13.
|
26 |
SUN B, GUAN X, FANG J, et al. Activation of manganese oxidants with bisulfite for enhanced oxidation of organic contaminants: the involvement of Mn(Ⅲ)[J]. Environmental Science & Technology, 2015, 49(20): 12414-12421.
|
27 |
CHOW C H, SZE-YIN LEUNG Y. Transformations of organic micropollutants undergoing permanganate/bisulfite treatment: kinetics, pathways and toxicity[J]. Chemosphere, 2019, 237: 124524.
|
28 |
YUAN D L, ZHANG C, TANG S F, et al. Fe3+-sulfite complexation enhanced persulfate Fenton-like process for antibiotic degradation based on response surface optimization[J]. Science of the Total Environment, 2020, 727: 138773.
|
29 |
殷雪妍, 张艾, 刘亚男. 过氧化钙去除水中糖皮质激素的响应面分析[J]. 中国环境科学, 2018, 38(2): 608-615.
|
|
YIN Xueyan, ZHANG Ai, LIU Yanan. Response surface analysis of calcium peroxide to remove glucocorticoids in water [J]. China Environmental Science, 2018, 38(2): 608-615.
|
30 |
BOKARE A D, CHOI W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes[J]. Journal of Hazardous Materials, 2014, 275: 121-135.
|
31 |
SHEN Y F, ZHANG N Y. Facile synthesis of porous carbons from silica-rich rice husk char for volatile organic compounds (VOCs) sorption [J]. Bioresource Technology, 2019, 282: 294-300.
|
32 |
ADAMO I, GHISOLI C, CAUCIA F. A contribution to the study of FTIR spectra of opals[J]. Neues Jahrbuch für Mineralogie-Abhandlungen, 2010, 187(1): 63-68.
|
33 |
KRAMER M G, SANDERMAN J, CHADWICK O A, et al. Long-term carbon storage through retention of dissolved aromatic acids by reactive particles in soil[J]. Global Change Biology, 2012, 18(8): 2594-2605.
|
34 |
SALVADÓ J, TESI T, ANDERSSON A, et al. Organic carbon remobilized from thawing permafrost is resequestered by reactive iron on the Eurasian Arctic Shelf[J]. Geophysical Research Letters, 2015, 42(19): 8122-8130.
|
35 |
ZHAO Q, POULSON S R, OBRIST D, et al. Iron-bound organic carbon in forest soils: quantification and characterization[J]. Biogeosciences, 2016, 13(16): 1104-1108.
|
36 |
HUANG X, FENG C, ZHAO G, et al. Carbon sequestration potential promoted by oxalate extractable iron oxides through organic fertilization[J]. Soil Science Society of America Journal, 2017, 81(6): 1359-1370.
|
37 |
DROSOS Marios, PICCOLO Alessandro. The molecular dynamics of soil humus as a function of tillage[J]. Land Degradation & Development, 2018, 29(6): 1792-1805.
|
38 |
KRAMER M G, CHADWICK O A. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale[J]. Nature Climate Change, 2018, 8(12): 1104-1108.
|
39 |
BARRAL M T, ARIAS M, GUERIF J. Effects of iron and organic matter on the porosity and structural stability of soil aggregates[J]. Soil & Tillage Research, 1998, 46(3/4): 261-272.
|
40 |
CHEN C, DYNES J J, WANG J, et al. Properties of Fe-organic matter associations via coprecipitation versus adsorption[J]. Environmental Science and Technology, 2014, 48(23): 13751-13759.
|
41 |
KLAUS Kaiser, GEORG Guggenberger. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils[J]. Organic Geochemistry, 2000, 31(7/8): 711-725.
|