1 |
CASSIDY D P, BELIA E. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge[J]. Water Research, 2005, 39(19): 4817-4823.
|
2 |
魏小涵, 毕学军, 尹志轩, 等. 温度和DO对MBBR系统硝化和反硝化的影响[J]. 中国环境科学, 2019, 39(2): 612-618.
|
|
WEI Xiaohan, BI Xuejun, YIN Zhixuan, et al. Effects of temperature and dissolved oxygen on nitrification and denitrification in MBBR system[J]. China Environmental Science, 2019, 39(2): 612-618.
|
3 |
DUCEY T F, VANOTTI M B, SHRINER A D, et al. Characterization of a microbial community capable of nitrification at cold temperature[J]. Bioresource Technology, 2010, 101(2): 491-500.
|
4 |
CHOI E, RHU D, YUN Z, et al. Temperature effects on biological nutrient removal system with weak municipal wastewater[J]. Water Science and Technology, 1998, 37(9): 219-226.
|
5 |
ZHANG S F, WANG Y Y, HE W T, et al. Impacts of temperature and nitrifying community on nitrification kinetics in a moving-bed biofilm reactor treating polluted raw water[J]. Chemical Engineering Journal, 2014, 236: 242-250.
|
6 |
HOANG V, DELATOLLA R, LAFLAMME E, et al. An investigation of moving bed biofilm reactor nitrification during long-term exposure to cold temperatures[J]. Water Environment Research, 2014, 86(1): 36-42.
|
7 |
李韧, 于莉芳, 张兴秀, 等. 硝化生物膜系统对低温的适应特性: MBBR和IFAS[J]. 环境科学, 2020, 41(8): 3691-3698.
|
|
LI Ren, YU Lifang, ZHANG Xingxiu, et al. Adaptability of nitrifying biofilm systems to low temperature: MBBR and IFAS[J]. Environmental Science, 2020, 41(8): 3691-3698.
|
8 |
ZAIDI N S, SOHAILI J, MUDA K, et al. Magnetic field application and its potential in water and wastewater treatment systems[J]. Separation & Purification Reviews, 2014, 43(3): 206-240.
|
9 |
ROSEN A D. Effect of a 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells[J]. Bioelectromagnetics, 2003, 24(7): 517-523.
|
10 |
WANG Z B, LIU X L, NI S Q, et al. Weak magnetic field: a powerful strategy to enhance partial nitrification[J]. Water Research, 2017, 120: 190-198.
|
11 |
耿淑英, 付伟章, 王静, 等. SBR系统外加磁场对微生物群落多样性和处理效果的影响[J]. 环境科学, 2017, 38(11): 4715-4724.
|
|
GENG Shuying, FU Weizhang, WANG Jing, et al. Treatment efficiency and microbial community diversity in a magnetic field enhanced sequencing batch reactor(SBR)[J]. Environmental Science, 2017, 38(11): 4715-4724.
|
12 |
NIU C, LIANG W H, REN H Q, et al. Enhancement of activated sludge activity by 10—50 mT static magnetic field intensity at low temperature[J]. Bioresource Technology, 2014, 159: 48-54.
|
13 |
JIA W L, ZHANG J, LU Y M, et al. Response of nitrite accumulation and microbial characteristics to low-intensity static magnetic field during partial nitrification[J]. Bioresource Technology, 2018, 259: 214-220.
|
14 |
JING A S, LIU T, QUAN X, et al. Enhanced nitrification in integrated floating fixed-film activated sludge (IFFAS) system using novel clinoptilolite composite carrier[J]. Frontiers of Environmental Science & Engineering, 2019, 13(5): 1-11.
|
15 |
孙洪伟, 陈翠忠, 高宇学, 等. 碳氮比对活性污泥胞外聚合物的长期影响[J]. 中国环境科学, 2018, 38(3): 950-958.
|
|
SUN H W, CHEN C Z, GAO Y X, et al. Effect of C/N ratio on extracellular polymeric substance(EPS) in the sequencing batch reactor(SBR)[J]. China Environmental Science, 2018, 38(3): 950-958.
|
16 |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
|
State Environmental Protection Administration. Water and wastewater monitoring analysis methods [M]. 4th ed. Beijing: China Environment Science Press, 2002.
|
17 |
吴韵瑕. 两种悬浮填料A2/O工艺处理城市污水对比小试研究[D]. 武汉: 华中科技大学, 2011.
|
|
WU Yunxia. Study on A2/O process with two suspended carriers treating municipal wastewater[D]. Wuhan: Huazhong University of Science and Technology, 2011.
|
18 |
周俊, 周立祥, 黄焕忠. 污泥胞外聚合物的提取方法及其对污泥脱水性能的影响[J]. 环境科学, 2013, 34(7): 2752-2757.
|
|
ZHOU Jun, ZHOU Lixiang, WONG Woochung. Optimization of extracellular polymeric substance extraction method and its role in the dewaterability of sludge[J]. Environmental Science, 2013, 34(7): 2752-2757.
|
19 |
杨明明, 刘子涵, 周杨, 等. 厌氧氨氧化颗粒污泥EPS及其对污泥表面特性的影响[J]. 环境科学, 2019, 40(5): 2341-2348.
|
|
YANG Mingming, LIU Zihan, ZHOU Yang, et al. Extracellular polymeric substances of ANAMMOX granular sludge and its effects on sludge surface characteristics[J]. Environmental Science, 2019, 40(5): 2341-2348.
|
20 |
FR/OLUND B, GRIEBE T, NIELSEN P H. Enzymatic activity in the activated-sludge floc matrix[J]. Applied Microbiology and Biotechnology, 1995, 43(4): 755-761.
|
21 |
陆浩良, 田晴, 朱艳彬, 等. 耐低温生物脱氮机制与对策研究进展[J]. 化工进展, 2020, 39(1): 372-379.
|
|
LU Haoliang, TIAN Qing, ZHU Yanbin, et al. State of the art for mechanisms and countermeasures of low temperature biological nitrogen removal[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 372-379.
|
22 |
艾胜书, 单慧, 王帆, 等. 低温下悬浮球生物填料的性能优化研究[J]. 水处理技术, 2019, 45(2): 76-81, 101.
|
|
AI Shengshu, SHAN Hui, WANG Fan, et al. Study on performance optimization of suspended ball bio-filler at low temperature[J]. Technology of Water Treatment, 2019, 45(2): 76-81, 101.
|
23 |
FARABEGOLI G, HELLINGA C, HEIJNEN J J, et al. Study on the use of NADH fluorescence measurements for monitoring wastewater treatment systems[J]. Water Research, 2003, 37(11): 2732-2738.
|
24 |
胡小兵, 林睿, 张琳, 等. 载体内微孔孔径对生物膜特性及废水处理效果的影响[J]. 环境工程学报, 2020, 14(12): 3329-3338.
|
|
HU Xiaobing, LIN Rui, ZHANG Lin, et al. Effect of carrier micropore diameter on biofilm characteristics and wastewater treatment performance[J]. Chinese Journal of Environmental Engineering, 2020, 14(12): 3329-3338.
|
25 |
周律, 方国锋, 姜丽丽. 序批式移动床生物膜反应器脱氮除磷特性及机理[J]. 清华大学学报(自然科学版), 2013, 53(5): 647-653.
|
|
ZHOU LYU, FANG Guofeng, JIANG Lili. Nitrogen and phosphorus removal mechanisms in a sequencing batch moving bed biofilm reactor[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(5): 647-653.
|
26 |
ZHU Y, ZHANG Y, REN H Q, et al. Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor[J]. Bioresource Technology, 2015, 180: 345-351.
|
27 |
FLEMMING H C, NEU T R, WOZNIAK D J. The EPS matrix: the “house of biofilm cells”[J]. Journal of Bacteriology, 2007, 189(22): 7945-7947.
|
28 |
操家顺, 江心, 方芳, 等. Fe3+对活性污泥胞内贮存物和胞外聚合物的影响[J]. 华中科技大学学报(自然科学版), 2014, 42(5): 101-106.
|
|
CAO Jiashun, JIANG Xin, FANG Fang, et al. Influences of Fe3+ on intracellular storage and extracellular polymeric substance of activated sludge[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2014, 42(5): 101-106.
|
29 |
HE S L, CHEN Y, QIN M, et al. Effects of temperature on anammox performance and community structure[J]. Bioresource Technology, 2018, 260: 186-195.
|
30 |
王荣昌, 肖帆, 赵建夫. 生物膜厚度对膜曝气生物膜反应器硝化性能的影响[J]. 高校化学工程学报, 2015, 29(1): 151-158.
|
|
WANG Rongchang, XIAO Fan, ZHAO Jianfu. Effects of biofilm thickness on nitrification performance of membrane-aerated biofilm reactors[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(1): 151-158.
|
31 |
ZHOU S L, ZHANG Y R, HUANG T L, et al. Microbial aerobic denitrification dominates nitrogen losses from reservoir ecosystem in the spring of Zhoucun reservoir[J]. Science of the Total Environment, 2019, 651: 998-1010.
|
32 |
FREESE H M, EGGERT A, GARLAND J L, et al. Substrate utilization profiles of bacterial strains in plankton from the river warnow, a humic and eutrophic river in north Germany[J]. Microbial Ecology, 2010, 59(1): 59-75.
|
33 |
魏东洋, 肖才林, 周雯, 等. FeCl3-生化耦合技术调控未知诱因的污泥膨胀[J]. 环境科学, 2019, 40(11): 5040-5047.
|
|
WEI Dongyang, XIAO Cailin, ZHOU Wen, et al. Control of sludge bulking caused by unknown reason through FeCl3 coupled with biochemical methods[J]. Environmental Science, 2019, 40(11): 5040-5047.
|
34 |
吴涵, 陈滢, 刘敏, 等. SBBR反应器中耐冷微生物的驯化与识别[J]. 化工学报, 2020, 71(2): 766-776.
|
|
WU Han, CHEN Ying, LIU Min, et al. Domestication and identification of cold-resistant bacteria in SBBR reactor[J]. CIESC Journal, 2020, 71(2): 766-776.
|
35 |
GONZALEZ-MARTINEZ A, RODRIGUEZ-SANCHEZ A, GARCIA-RUIZ M J, et al. Performance and bacterial community dynamics of a CANON bioreactor acclimated from high to low operational temperatures[J]. Chemical Engineering Journal, 2016, 287: 557-567.
|
36 |
LÜCKER S, SCHWARZ J, GRUBER-DORNINGER C, et al. Nitrotoga-like bacteria are previously unrecognized key nitrite oxidizers in full-scale wastewater treatment plants[J]. The ISME Journal, 2015, 9(3): 708-720.
|