化工进展 ›› 2020, Vol. 39 ›› Issue (1): 372-379.DOI: 10.16085/j.issn.1000-6613.2019-0633
收稿日期:
2019-04-21
出版日期:
2020-01-05
发布日期:
2020-01-14
通讯作者:
田晴
作者简介:
陆浩良(1995—),男,硕士研究生,研究方向为污水生物脱氮除磷。E-mail:<email>2181543@mail.dhu.edu.cn</email>。
基金资助:
Haoliang LU(),Qing TIAN(),Yanbin ZHU,Jian ZHANG,Pengbo JIAO,Huan LIN
Received:
2019-04-21
Online:
2020-01-05
Published:
2020-01-14
Contact:
Qing TIAN
摘要:
废水处理系统中不可避免存在着低温环境,低温使得硝化菌和反硝化菌的活性下降,如何在低温条件下提高污水生物脱氮效果是废水处理研究工作中亟待解决的问题。本文对近年来研究发现的低温微生物耐低温机制进行了梳理,提出了最近发现的胞外聚合物(EPS)和聚羟基脂肪酸酯(PHA)的作用机理;介绍了几种已被研究证实能在低温下进行脱氮的功能菌与一些可以提高低温污水脱氮效果的新技术/工艺(包括使用新型填料、改变碳源投加方式、投加特定的重金属);阐述了目前研究所遇到的一些问题,如缺乏工程实践、处理水质与研究菌株单一,研究结论与实际废水处理应用还有着差距。指出未来可以通过特异性功能菌的固定与使用、生物倍增技术与工程实践结合等方法来降低运行成本,提高低温污水的脱氮效果。
中图分类号:
陆浩良, 田晴, 朱艳彬, 张健, 焦彭博, 林欢. 耐低温生物脱氮机制与对策研究进展[J]. 化工进展, 2020, 39(1): 372-379.
Haoliang LU, Qing TIAN, Yanbin ZHU, Jian ZHANG, Pengbo JIAO, Huan LIN. State of the art for mechanisms and countermeasures of low temperature biological nitrogen removal[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 372-379.
1 | DAI H L , CHEN W L , LU X W . The application of multi-objective optimization method for activated sludge process: a review[J]. Water Science and Technology, 2016, 73(2): 223-235. |
2 | LAURENI M , FALAS P , ROBIN O , et al . Mainstream partial nitritation and anammox: long-term process stability and effluent quality at low temperatures[J]. Water Research, 2016, 101: 628-639. |
3 | 杨建鹏, 张健, 田晴, 等 . 内源碳PHA的贮存对混合菌群耐低温特性的影响[J]. 环境科学, 2019, 40(4): 1914-1921. |
YANG J P , ZHANG J , TIAN Q , et al . Effect of intracellular carbon source (PHA) storage on the mixed growth microbial community resistance to low temperature[J]. Environment Science, 2019, 40(4): 1914-1921. | |
4 | MORITA R Y . Psychrophilic bacteria[J]. Bacteriological Reviews, 1975, 39(2): 144-167. |
5 | RODRIGUES D F , TIEDJE J M . Coping with our cold planet[J]. Applied and Environmental Microbiology, 2008, 74(6): 1677-1686. |
6 | TEHEI M , ZACCAI G . Adaptation to extreme environments: macromolecular dynamics in complex systems[J]. Biochimica et Biophysica Acta: General Subjects, 2005, 1724(3): 404-410. |
7 | MORGAN-KISS R M , PRISCU J C , POCOCK T , et al . Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments[J]. Microbiology and Molecular Biology Reviews, 2006, 70(1): 222-252. |
8 | AYALA-DEL-RIO H L , CHAIN P S , GRZYMSKI J J , et al . The genome sequence of Psychrobacter arcticus 273-4, a psychroactive siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth[J]. Applied and Environmental Microbiology, 2010, 76(7): 2304-2312. |
9 | MA Y , WANG Q Y , XU W S , et al . Stationary phase-dependent accumulation of ectoine is an efficient adaptation strategy in Vibrio anguillarum against cold stress[J]. Microbiological Research, 2017, 205: 8-18. |
10 | SALAMA Y , CHENNAOUI M , SYLLA A , et al . Characterization, structure, and function of extracellular polymeric substances (EPS) of microbial biofilm in biological wastewater treatment systems: a review[J]. Desalination and Water Treatment, 2016, 57(35): 16220-16237. |
11 | WILLIAMS T J , LIAO Y , YE J , et al . Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi [J]. Environmental Microbiology, 2017, 19(6): 2210-2227. |
12 | DE MAAYER P , ANDERSON D , CARY C , et al . Some like it cold: understanding the survival strategies of psychrophiles[J]. EMBO Reports, 2014, 15(5): 508-517. |
13 | 李硕, 彭永臻, 王然登 . 胞外聚合物在污水生物处理中的作用[J]. 黑龙江大学自然科学学报, 2016, 33(4): 515-520. |
LI S , PENG Y Z , WANG R D , et al . The role of extracellular polymers substance in biological treatment of wastewater[J]. Journal of Natural Science of Heilongjiang University, 2016, 33(4): 515-520. | |
14 | 韩晓云 . 低温生物膜及其微生物特性的研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. |
HAN X Y . Low temperature biofilm and its microbial charactistics[D]. Harbin: Harbin Institute of Technology, 2006. | |
15 | MA Z , WEN X H , ZHAO F , et al . Effect of temperature variation on membrane fouling and microbial community structure in membrane bioreactor[J]. Bioresource Technology, 2013, 133: 462-468. |
16 | NICHOLS C M , BOWMAN J P , GUEZENNEC J . Effects of incubation temperature on growth and production of exopolysaccharides by an Antarctic sea ice bacterium grown in batch culture[J]. Applied and Environmental Microbiology, 2005, 71(7): 3519-3523. |
17 | HE S L , CHEN Y , QIN M , et al . Effects of temperature on anammox performance and community structure[J]. Bioresource Technology, 2018, 260: 186-195. |
18 | VARIN T , LOVEJOY C , JUNGBLUT A D , et al . Metagenomic analysis of stress genes in microbial mat communities from antarctica and the high arctic[J]. Applied and Environmental Microbiology, 2012, 78(2): 549-559. |
19 | COLLINS T , MARGESIN R . Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools[J]. Applied Microbiology and Biotechnology, 2019, 203(7): 2857-2871. |
20 | SATHYA A B , SIVASUBRAMANIAN V , SANTHIAGU A , et al . Production of polyhydroxyalkanoates from renewable sources using bacteria[J]. Journal of Polymers and the Environment, 2018, 26(9): 3995-4012. |
21 | TIAN Q , ZHUANG L J , ONG S K, et al . Phosphorus (P) recovery coupled with increasing influent ammonium facilitated intracellular carbon source storage and simultaneous aerobic phosphorus & nitrogen removal[J]. Water Research, 2017, 119: 267-275. |
22 | INOUE D , SUZUKI Y , SAWADA K , et al . Polyhydroxyalkanoate accumulation ability and associated microbial community in activated sludge-derived acetate-fed microbial cultures enriched under different temperature and pH conditions[J]. Journal of Bioscience and Bioengineering, 2018, 125(3): 339-345. |
23 | TING L , WILLIAMS T J , COWLEY M J , et al . Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics[J]. Environmental Microbiology, 2010, 12(10): 2658-2676. |
24 | RAIGER-IUSTMAN L J , RUIZ J A . The alternative sigma factor, sigma(S), affects polyhydroxyalkanoate metabolism in Pseudomonas putida [J]. Fems Microbiology Letters, 2008, 284(2): 218-224. |
25 | SEDLACEK P , SLANINOVA E , KOLLER M , et al . PHA granules help bacterial cells to preserve cell integrity when exposed to sudden osmotic imbalances[J]. New Biotechnology, 2019, 49: 129-136. |
26 | 车雪梅, 司徒卫, 余柳松, 等 . 聚羟基脂肪酸酯的应用展望[J]. 生物工程学报, 2018, 34(10): 1531-1542. |
CHE X M , SITU W , YU L S , et al . Application perspectives of polyhydroxyalkanoates[J]. Chinese Journal of Biotechnology, 2018, 34(10): 1531-1542. | |
27 | 游佳, 吴金香, 郑兴灿 . A2/O型氧化沟工艺中硝化速率的变化特征研究[J]. 中国给水排水, 2011, 27(19): 75-77. |
YOU J , WU J X , ZHENG X C . Study on variation characteristic of nitrification rate of activated sludge in A2/O type oxidation ditch process[J]. China Water & Wastewater, 2011, 27(19): 75-77. | |
28 | OEHMEN A , LEMOS P C , CARVALHO G , et al . Advances in enhanced biological phosphorus removal: From micro to macro scale[J]. Water Research, 2007, 41(11): 2271-2300. |
29 | SHEN N , CHEN Y , ZHOU Y . Multi-cycle operation of enhanced biological phosphorus removal (ESPR) with different carbon sources under high temperature[J]. Water Research, 2017, 114: 308-315. |
30 | 尹军, 王建辉, 王雪峰, 等 . 污水生物除磷若干影响因素分析[J]. 环境工程学报, 2007, 1(4): 6-11. |
YIN J , WANG J H , WANG X F , et al . Influencing factors of biological phosphorus removal in sewage treatment[J]. Chinese Journal of Environmental Engineering, 2007, 1(4): 6-11. | |
31 | DAIMS H , LEBEDEVA E V , PJEVAC P , et al . Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583): 504-509. |
32 | PAN K-L , GAO J-F , LI H-Y , et al . Ammonia-oxidizing bacteria dominate ammonia oxidation in a full-scale wastewater treatment plant revealed by DNA-based stable isotope probing[J]. Bioresource Technology, 2018, 256: 152-159. |
33 | YIN Z X , BI X J , XU C L . Ammonia-oxidizing archaea (AOA) play with ammonia-oxidizing bacteria (AOB) in nitrogen removal from wastewater[J]. Archaea, 2018, 2018: 1-9. |
34 | CHEN Y , LAN S , WANG L , et al . A review: driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems[J]. Chemosphere, 2017, 174: 173-182. |
35 | ZHOU H X , LI X K , CHU Z R , et al . Effect of temperature downshifts on a bench-scale hybrid A/O system: process performance and microbial community dynamics[J]. Chemosphere, 2016, 153: 500-507. |
36 | MA Q , QU Y , SHEN W , et al . Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing[J]. Bioresource Technology, 2015, 179: 436-443. |
37 | WANG W D , LIU W Y , WU D , et al . Differentiation of nitrogen and microbial community in the littoral and limnetic sediments of a large shallow eutrophic lake (Chaohu Lake, China)[J]. Journal of Soils and Sediments, 2019, 19(2): 1005-1016. |
38 | ZHANG D , LI W , HUANG X , et al . Removal of ammonium in surface water at low temperature by a newly isolated Microbacterium sp. strain SFA13[J]. Bioresource Technology, 2013, 137: 147-152. |
39 | 秦必达 . 耐冷硝化细菌Pseudomonas mohnii . M-8的筛选鉴定及脱氮效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
QIN B D . Research on isolation, identification and nitrogen removal efficiency of cold tolerant nitrifying bacteria Pseudomonas mohnii .M-8[D]. Harbin: Harbin Institute of Technology, 2018. | |
40 | HUANG X , LI W , ZHANG D , et al . Ammonium removal by a novel oligotrophic Acinetobacter sp. Y16 capable of heterotrophic nitrification-aerobic denitrification at low temperature[J]. Bioresource Technology, 2013, 146: 44-50. |
41 | YAO S , NI J , CHEN Q , et al . Enrichment and characterization of a bacteria consortium capable of heterotrophic nitrification and aerobic denitrification at low temperature[J]. Bioresource Technology, 2013, 127: 151-157. |
42 | 路俊玲, 陈慧萍, 肖琳 . 低温反硝化菌——施氏假单胞菌N3的筛选及脱氮性能[J]. 环境科学, 2018, 39(12): 5612-5619. |
LU J L , CHEN H P , XIAO L . Characterization of a newly isolated strain Pseudomonas sp. N3 for denitrification at low temperature[J]. Environment Science, 2018, 39(12): 5612-5619. | |
43 | ZHOU H X , LI X , XU G R , et al . Overview of strategies for enhanced treatment of municipal/domestic wastewater at low temperature[J]. Science of the Total Environment, 2018, 643: 225-237. |
44 | REGMI P , THOMAS W , SCHAFRAN G , et al . Nitrogen removal assessment through nitrification rates and media biofilm accumulation in an IFAS process demonstration study[J]. Water Research, 2011, 45(20): 6699-6708. |
45 | HE S , DING L L , WANG X , et al . Biochar carrier application for nitrogen removal of domestic WWTPs in winter: challenges and opportunities[J]. Applied Microbiology and Biotechnology, 2018, 102(22): 9411-9418. |
46 | FAGBOHUNGBE M O , HERBERT B M J , HURST L , et al . The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion[J]. Waste Management, 2017, 61: 236-249. |
47 | 艾胜书, 单慧, 王帆, 等 . 低温下悬浮球生物填料的性能优化研究[J]. 水处理技术, 2019, 45(2): 76-101. |
AI S S , SHAN H , WANG F , et al . Study on performance optimization of suspended ball bio-filler at low temperature[J]. Technology of Water Treatment, 2019, 45(2): 76-101. | |
48 | VYRIDES I , STUCKEY D C . Compatible solute addition to biological systems treating waste/wastewater to counteract osmotic and other environmental stresses: a review[J]. Critical Reviews in Biotechnology, 2017, 37(7): 865-879. |
49 | BOETIUS A , ANESIO A M , DEMING J W , et al . Microbial ecology of the cryosphere: sea ice and glacial habitats[J]. Nature Reviews Microbiology, 2015, 13(11): 677-690. |
50 | LI J , BAI L J , QIANG Z M , et al . Nitrogen removal through "Candidatus Brocadia sinica" treating high-salinity and low-temperature wastewater with glycine addition: enhanced performance and kinetics[J]. Bioresource Technology, 2018, 270: 755-761. |
51 | 苑宏英, 孙烨怡, 李原玲, 等 . 不同碳源对低温投加氧化还原介体污水生物反硝化脱氮过程的影响[J]. 化工进展, 2018, 37(2): 783-788. |
YUAN H Y , SUN Y Y , LI Y L , et al . Effects of different carbon sources on biological denitrification of wastewater at low temperature with adding redox mediator[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 783-788. | |
52 | SHU D , HE Y , YUE H , et al . Effects of Fe(Ⅱ) on microbial communities, nitrogen transformation pathways and iron cycling in the anammox process: kinetics, quantitative molecular mechanism and metagenomic analysis[J]. RSC Advances, 2016, 6(72): 68005-68016. |
53 | ZHANG X , ZHOU Y , ZHANG N , et al . Short-term and long-term effects of Zn (Ⅱ) on the microbial activity and sludge property of partial nitrification process[J]. Bioresource Technology, 2017, 228: 315-321. |
54 | ZHANG X , CHEN Z , ZHOU Y , et al . Impacts of the heavy metals Cu (Ⅱ), Zn (Ⅱ) and Fe (Ⅱ) on an Anammox system treating synthetic wastewater in low ammonia nitrogen and low temperature: Fe (Ⅱ) makes a difference[J]. Science of the Total Environment, 2019, 648: 798-804. |
55 | HAO L , GUO Y , BYRNE J M , et al . Binding of heavy metal ions in aggregates of microbial cells, EPS and biogenic iron minerals measured in-situ using metal- and glycoconjugates-specific fluorophores[J]. Geochimica et Cosmochimica Acta, 2016, 180: 66-96. |
56 | 魏亮亮, 王胜, 薛茂, 等 . 城镇污泥胞外聚合物对重金属吸附特征及机制[J]. 哈尔滨工业大学学报, 2018, 50(8): 188-198. |
WEI L L , WANG S , XUE M , et al . Study on adsorption of heavy metals onto sludge extracellular polymers substances (EPS) : a review[J]. Journal of Harbin Institute of Technology, 2018, 50(8): 188-198. | |
57 | WANG J H , PENG Y Z , CHEN Y Z . Advanced nitrogen and phosphorus removal in A2/O-BAF system treating low carbon-to-nitrogen ratio domestic wastewater[J]. Frontiers of Environmental Science & Engineering in China, 2011, 5(3): 474-480. |
[1] | 许中硕, 周盼盼, 王宇晖, 黄威, 宋新山. 硫铁矿介导的自养反硝化研究进展[J]. 化工进展, 2023, 42(9): 4863-4871. |
[2] | 李白雪, 信欣, 朱羽蒙, 刘琴, 刘鑫. SASD-A体系构建及进水不同S/N对脱氮工艺的影响机制[J]. 化工进展, 2023, 42(6): 3261-3271. |
[3] | 朱紫旋, 陈俊江, 张星星, 李祥, 刘文如, 吴鹏. 基于短程反硝化厌氧氨氧化新型污水生物脱氮工艺的研究进展[J]. 化工进展, 2023, 42(4): 2091-2100. |
[4] | 赵星程, 贾方旭, 蒋伟彧, 陈佳熠, 刘晨雨, 姚宏. 氧化还原介体介导厌氧氨氧化生物脱氮的研究进展[J]. 化工进展, 2023, 42(3): 1606-1617. |
[5] | 吴新波, 党鸿钟, 马娇, 严渊, 曾天续, 李维维, 张国珍, 陈永志. A2/O-BAF工艺短程硝化模式下反硝化除磷效能[J]. 化工进展, 2023, 42(2): 1089-1097. |
[6] | 王超超, 吴翼伶, 陈嘉巧, 蔡天宁, 刘文如, 李祥, 吴鹏. 新型厌氧水解酸化-短程反硝化厌氧氨氧化工艺同步处理生活污水和含硝酸盐模拟废水[J]. 化工进展, 2022, 41(7): 3890-3899. |
[7] | 汪宇光, 张星星, 王超超, 夏云康, 王垚, 周澄, 吴翼伶, 吴鹏, 徐乐中. 反硝化除磷+短程反硝化厌氧氨氧化工艺的深度脱氮除磷效能[J]. 化工进展, 2022, 41(4): 2191-2201. |
[8] | 刘锋, 张雪智, 王苏琴, 冯震, 葛丹丹, 杨洋. 硫代硫酸盐驱动自养反硝化耦合厌氧氨氧化强化总氮去除[J]. 化工进展, 2022, 41(2): 990-997. |
[9] | 李冬, 高鑫, 杨杰, 陈昊, 张杰. 长/短HRT联合低/高曝气实现短程硝化反硝化脱氮除磷[J]. 化工进展, 2022, 41(11): 6111-6119. |
[10] | 陈志华, 周键, 王三反. 固相反硝化在水污染治理中的研究进展[J]. 化工进展, 2021, 40(S1): 366-374. |
[11] | 潘云飞, 唐正, 彭欣怡, 高品. 石油烃污染土壤微生物修复技术研究现状及进展[J]. 化工进展, 2021, 40(8): 4562-4572. |
[12] | 宋慧赟, 王莹, 陈虎, 吕永康. 盐度对新型生物脱氮技术影响的研究进展[J]. 化工进展, 2021, 40(4): 2298-2307. |
[13] | 郑凯, 张子贤, 吴勇, 王万红, 武福平. 改良型多级A/O-MBR组合工艺对低C/N比生活污水的强化除磷[J]. 化工进展, 2021, 40(3): 1675-1680. |
[14] | 张兰河, 袁镇涛, 赵浩杰, 赵君田, 祝艺宁, 陈子成, 贾艳萍, 田书磊. 外加电流对AO工艺缺氧区脱氮效率与污泥絮凝的影响[J]. 化工进展, 2021, 40(11): 6369-6377. |
[15] | 耿雅雯, 刘锋, 冯震, 陈俊, 张雪智. 硫自养/异养协同反硝化深度脱氮处理三氯蔗糖生产废水[J]. 化工进展, 2021, 40(10): 5829-5836. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |