化工进展 ›› 2021, Vol. 40 ›› Issue (S1): 366-374.DOI: 10.16085/j.issn.1000-6613.2020-2355
收稿日期:
2020-11-25
修回日期:
2020-12-10
出版日期:
2021-10-25
发布日期:
2021-11-09
通讯作者:
周键
作者简介:
陈志华(1994—),男,硕士研究生,研究方向为离子交换膜的改性、水资源综合利用。E-mail:基金资助:
CHEN Zhihua1,2(), ZHOU Jian1,2(), WANG Sanfan1,2
Received:
2020-11-25
Revised:
2020-12-10
Online:
2021-10-25
Published:
2021-11-09
Contact:
ZHOU Jian
摘要:
水环境中硝酸盐污染是普遍存在的问题。固相反硝化(SPD)技术由于其相对于水基反硝化在水修复中的显著优势而受到越来越多的关注。本文对SPD在水修复中的应用提出了新的看法,介绍了SPD中氮转化的过程和机理,如直接反硝化、异化硝酸盐还原成铵和厌氧氨氧化;讨论了碳底物在SPD中转化的主要过程;研究了SPD的主要局限性,包括碳源可用性低,NO2-和N2O积累,溶解有机碳释放和NH4+的生产,并总结了相关的限制因素;此外,还介绍了一些新的措施来减轻这些限制,如应用可生物降解的聚合物底物和异养自养反硝化HAD过程;最后讨论了同时去除硝酸盐和一些典型污染物以扩大SPD应用的方法。本综述试图提高人们对废水处理或水修复工程中反硝化过程的理解。
中图分类号:
陈志华, 周键, 王三反. 固相反硝化在水污染治理中的研究进展[J]. 化工进展, 2021, 40(S1): 366-374.
CHEN Zhihua, ZHOU Jian, WANG Sanfan. Summary of solid phase denitrification in water pollution control[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 366-374.
类型 | 固体碳源 | 入口硝酸盐/mg NO3--N·L-1 | 反硝化作用速率/mg NO3--N·L-1·d-1 | 参考文献 |
---|---|---|---|---|
木质纤维素材料 | 玉米棒 | 25.3 | 203 | [ |
玉米 | 100 | 2.88 | [ | |
棉毛 | 30.97 | 43.92 | [ | |
棉花 | 24.8 | 0.50 | [ | |
麦秸 | 22.6 | 53.04 | [ | |
纸板 | 100 | 1.05 | [ | |
废纤维素固体 | 50 | 1 | [ | |
松树皮 | 60 | 0.75 | [ | |
橄榄坚果 | 30 | 60.31 | [ | |
棉花毛刺堆肥 | 20 | 0.91 | [ | |
软木 | 32.2 | 0.067 | [ | |
木屑 | 100 | 0.45 | [ | |
木头颗粒 | 9 | 2 | [ | |
针叶树 | 32.2 | 0.048 | [ | |
柳树 | 3 | 1.86 | [ | |
枫树 | 7.6 | 6.68 | [ | |
红色口香糖 | 55 | 45.87 | [ | |
野生樱桃 | 3 | 1.08 | [ | |
几丁质 | 蟹壳甲壳素 | 22.7 | 2 | [ |
废物回收 | 水解蜜糖 | 22.6 | 155.52 | [ |
酒业副产品 | 12.04 | 暂无 | [ | |
剩余活性污泥 | 15 | 暂无 | [ | |
砂涂油 | 20 | 21 | [ |
表1 不同固体碳源的反硝化性能
类型 | 固体碳源 | 入口硝酸盐/mg NO3--N·L-1 | 反硝化作用速率/mg NO3--N·L-1·d-1 | 参考文献 |
---|---|---|---|---|
木质纤维素材料 | 玉米棒 | 25.3 | 203 | [ |
玉米 | 100 | 2.88 | [ | |
棉毛 | 30.97 | 43.92 | [ | |
棉花 | 24.8 | 0.50 | [ | |
麦秸 | 22.6 | 53.04 | [ | |
纸板 | 100 | 1.05 | [ | |
废纤维素固体 | 50 | 1 | [ | |
松树皮 | 60 | 0.75 | [ | |
橄榄坚果 | 30 | 60.31 | [ | |
棉花毛刺堆肥 | 20 | 0.91 | [ | |
软木 | 32.2 | 0.067 | [ | |
木屑 | 100 | 0.45 | [ | |
木头颗粒 | 9 | 2 | [ | |
针叶树 | 32.2 | 0.048 | [ | |
柳树 | 3 | 1.86 | [ | |
枫树 | 7.6 | 6.68 | [ | |
红色口香糖 | 55 | 45.87 | [ | |
野生樱桃 | 3 | 1.08 | [ | |
几丁质 | 蟹壳甲壳素 | 22.7 | 2 | [ |
废物回收 | 水解蜜糖 | 22.6 | 155.52 | [ |
酒业副产品 | 12.04 | 暂无 | [ | |
剩余活性污泥 | 15 | 暂无 | [ | |
砂涂油 | 20 | 21 | [ |
1 | SCHIPPER L A, GOLD A J, DAVIDSON E A. Managing denitrification in human-dominated landscapes[J]. Ecological Engineering, 2010, 36(11): 1503-1506. |
2 | ADAV S S, LEE D J, LAI J Y. Enhanced biological denitrification of high concentration of nitrite with supplementary carbon source[J]. Applied Microbiology and Biotechnology, 2010, 85(3): 773. |
3 | ROCCA C D, BELGIORNO V, MERI S. Heterotrophic/autotrophic denitrification (HAD) of drinking water: prospective use for permeable reactive barrier[J]. Desalination, 2007, 210(1/2/3): 194-204. |
4 | ROCCA C D, BELGIORNO V, MERI S. Overview of in-situ applicable nitrate removal processes[J]. Desalination, 2007, 204(1/2/3): 46-62. |
5 | YEKWAYO I, PRYKE J S, ROETS F, et al. Surrounding vegetation matters for arthropods of small, natural patches of indigenous forest[J]. Insect Conservation and Diversity, 2016, 9(3): 14-20. |
6 | PUIG R, SOLER A, WIDORY D, et al. Characterizing sources and natural attenuation of nitrate contamination in the Baix Ter aquifer system (NE Spain) using a multi-isotope approach[J]. Ence of the Total Environment, 2017, 580(15): 518-532. |
7 | RABAH F K J, DAHAB M F. Nitrate removal characteristics of high performance fluidized-bed biofilm reactors[J]. Water Research, 2004, 38(17): 3719-3728. |
8 | LOUZEIRO N R, MAVINIC D S, OLDHAM W K, et al. Methanol-induced biological nutrient removal kinetics in a full-scale sequencing batch reactor[J]. Water Research, 2002, 36(11): 2721-2732. |
9 | MOHSENIBANDPI A, ELLIOTT D J, MOMENYMAZDEH A. Denitrification of groundwater using acetic acid as a carbon source[J]. Water Ence & Technology, 1999, 40(2): 53-59. |
10 | 王弘宇, 马放, 苏俊峰, 等. 不同碳源和碳氮比对一株好氧反硝化细菌脱氮性能的影响[J]. 环境科学学报, 2007, 56(6): 968-972. |
WANG Hongyu, MA Fang, SU Junfeng, et al. Influence of carbon source and C/N ratio on nitrogen removal of aerobic denitrifier[J]. Acta Entiae Circumstantiae, 2007, 56(6): 968-972. | |
11 | LYNN T J, YEH D H, ERGAS S J. Performance of denitrifying stormwater biofilters under intermittent conditions[J]. Environmental Engineering Ence, 2015, 32(9): 796-805. |
12 | BOLEY A, MÜLLER W R, HAIDER G. Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems[J]. Aquacultural Engineering, 2000, 22(1/2): 112-135. |
13 | WU Weizhong, YANG Luhua, WANG Jianlong. Denitrification performance and microbial diversity in a packed-bed bioreactor using PCL as carbon source and biofilm carrier[J]. Applied Microbiology and Biotechnology, 2013, 97(6): 158-175. |
14 | FERNANDEZ-NAVA Y, MARANON E, SOONS J, et al. Denitrification of high nitrate concentration wastewater using alternative carbon sources[J]. Journal of Hazardous Materials, 2010, 173(1/2/3): 682-688. |
15 | RIUETT M O, BUSS S R, MORGAN P, et al. Nitrate attenuation in groundwater: a review of biogeochemical controlling processes[J]. Water Research, 2008, 42(16): 4215-4232. |
16 | WANG Jianlong, CHU Libing. Biological nitrate removal from water and wastewater by solid-phase denitrification process[J]. Biotechnology Advances, 2016, 34(6): 215-232. |
17 | CHEN Dan, YANG Kai, LI Wei, et al. Microbial community and metabolism activity in a bioelectrochemical denitrification system under long-term presence of p-nitrophenol[J]. Bioresource Technology, 2016, 218(6): 315-332. |
18 | CHON K M, CHANG J S, LEE E Y, et al. Abundance of denitrifying genes coding for nitrate (narG), nitrite (nirS), and nitrous oxide (nosZ) reductases in estuarine versus wastewater effluent-fed constructed wetlands[J]. Ecological Engineering, 2009, 37(1): 1011-1023. |
19 | FESEFELDT A, BRAKER G. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples[J]. Applied and Environmental Microbiology, 1998, 64(10):3769-3775. |
20 | YAN Tingfen, MATTHEW W. Molecular diversity and characterization of nitrite reductase gene fragments (nirK and nirS) from nitrate- and uranium-contaminated groundwater[J]. Environmental Microbiology, 2003, 5(1): 769-775. |
21 | MARCHANT H K, LAVIK G, HOLTAPPELS M, et al. The fate of nitrate in intertidal permeable sediments[J]. PLoS One, 2014, 9(8): 104-517. |
22 | KRAFT B, STROUS M, TEGETMEYER H E. Microbial nitrate respiration--genes, enzymes and environmental distribution[J]. Journal of Biotechnology, 2011, 155(1): 104-117. |
23 | STOLZ F, BASU P. Evolution of nitrate reductase: molecular and structural variations on a common function[J]. ChemBioChem, 2010, 3(2/3): 198-206. |
24 | HE Qiaochong, FENG Chuanping, TONG Peng, et al. Denitrification of synthetic nitrate-contaminated groundwater combined with rice washing drainage treatment[J]. Ecological Engineering, 2016, 53(2): 98-106. |
25 | WARNEKE S, SCHIPPER L A, BRUESEWITZ D A, et al. Rates, controls and potential adverse effects of nitrate removal in a denitrification bed[J]. Ecological Engineering, 2011, 37(3): 511-522. |
26 | OVEZ B, OZGEN S, YUKSEL M. Biological denitrification in drinking water using Glycyrrhiza glabra and Arunda donax as the carbon source[J]. Process Biochemistry, 2006, 41(7): 1539-1544. |
27 | XU Zuxin, LIU Shao, YIN Hailong, et al. Biological denitrification using corncobs as a carbon source and biofilm carrier[J]. Water Environment Research, 2009, 81(3): 539-544. |
28 | GREENAN C M, MOORMAN T B, KASPAR T C, et al. Comparing carbon substrates for denitrification of subsurface drainage water[J]. Journal of Environmental Quality, 2006, 35(3): 824-869. |
29 | AMIR Aloni, ASHER Brenner. Use of cotton as a carbon source for denitrification in biofilters for groundwater remediation[J]. Water, 2017, 9(9): 124-138. |
30 | ROBERTSON W D, BLOWES D W, PTACEK C J, et al. Long-term performance of in situ reactive barriers for nitrate remediation[J]. Ground Water, 2010, 38(5): 689-695. |
31 | CAPODICI M, MORICI C, VIVIANI G. Batch test evaluation of four organic substrates suitable for biological groundwater denitrification[J]. Chemical Engineering Transactions, 2014, 38: 43-48. |
32 | CAPODICI M, AVONA A, LAUDICINA V A, et al. Biological groundwater denitrification systems: lab-scale trials aimed at nitrous oxide production and emission assessment[J]. Ence of the Total Environment, 2018, 630(15): 462-468. |
33 | ORIOL Gibert, SYLWIA Pomierny, IVAN Rowe, et al. Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB)[J]. Bioresource Technology, 2008, 99(16): 7587-7596. |
34 | FOWDAR H S, HATT B E, BREEN P, et al. Evaluation of sustainable electron donors for nitrate removal in different water media[J]. Water Research, 2015, 85(15): 487-496. |
35 | ROBIN-SONLORA M A, BRENNAN R A. The use of crab-shell chitin for biological denitrification: batch and column tests[J]. Bioresource Technology, 2009, 100(2): 534-541. |
36 | QUAN Zhexue, JIN Yinshu, LEE Jay, et al. Hydrolyzed molasses as an external carbon source in biological nitrogen removal[J]. Bioresource Technology, 2005, 96(15): 34-41. |
37 | CARREY R, RODRIGUEZ-ESCALES P, SOLER A, et al. Tracing the role of endogenous carbon in denitrification using wine industry by-product as an external electron donor: coupling isotopic tools with mathematical modeling[J]. Journal of Environmental Management, 2018, 207(1): 105-115. |
38 | SUN Haohao, WU Qiang, YU Ping, et al. Denitrification using excess activated sludge as carbon source: performance and the microbial community dynamics[J]. Bioresource Technology, 2017, 238(2): 98-112. |
39 | RAYNER M J, HAUBER M E, STEEVES T E, et al. Contemporary and historical separation of transequatorial migration between genetically distinct seabird populations[J]. Nature Communications, 2011, 125(2): 332-356. |
40 | AHMAD F, MCGUIRE T M, LEE R S, et al. Considerations for the design of organic mulch permeable reactive barriers[J]. Remediation Journal, 2007, 18(1): 59-72. |
41 | FENG Lijuan, YANG Guangfeng, YANG Qi, et al. Enhanced simultaneous nitrification and denitrification via addition of biodegradable carrier Phragmites communis in biofilm pretreatment reactor treating polluted source water[J]. Ecological Engineering, 2015, 84(1): 1121-1156. |
42 | SCHIPPER Louis A, MAJA Vojvodić-Vuković. Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust[J]. Ecological Engineering, 2000, 125(1): 102-125. |
43 | GE Shijian, PENG Yongzhen, WANG Shuying, et al. Nitrite accumulation under constant temperature in anoxic denitrification process: the effects of carbon sources and COD/NO3-[J]. Bioresource Technology, 2012, 114(1): 98-123. |
44 | HOOVER N L, ALOK B, SOUPIR M L, et al. Woodchip denitrification bioreactors: impact of temperature and hydraulic retention time on nitrate removal[J]. Journal of Environmental Quality, 2016, 45(3): 803-805. |
45 | BLACKMER A M, BREMNER J M. Stimulatory effect of nitrate on reduction of N2O to N2 by soil microorganisms[J]. Soil Biology & Biochemistry, 1979, 11(3):313-315 |
46 | ELGOOD Z, ROBERTSON W D, SCHIFF S L, et al. Nitrate removal and greenhouse gas production in a stream-bed denitrifying bioreactor[J]. Ecological Engineering, 2010, 36(11): 1575-1580. |
47 | ZHAO Wei, WANG Yayi, LIU Shanhu, et al. Denitrification activities and N2O production under salt stress with varying COD/N ratios and terminal electron acceptors[J]. Chemical Engineering Journal, 2013, 22(2): 215-216. |
48 | AHMAD I, ZAHARAH Ibrahim, SHAZA Eva Mohamad, et al. Biokinetics of nitrogen removal at high concentrations by Rhodobacter sphaeroides [J]. International Biodeterioration & Biodegradation, 2015, 105(2): 15-16. |
49 | KOROM S F. Natural denitrification in the saturated zone: a review[J]. Water Resources Research, 1992, 28(6): 1657-1668. |
50 | LYNN T J, YEH D H, ERGAS S J. Performance and longevity of denitrifying wood-chip biofilters for stormwater treatment: a microcosm study[J]. Environmental Engineering Ence, 2015, 32(4): 321-330. |
51 | MAXWELL B M, BIRGAND F, SCHIPPER L A, et al. Drying-rewetting cycles affect nitrate removal rates in woodchip bioreactors[J]. Journal of Environmental Quality, 2018, 48(4): 21-30. |
52 | TAN Xuezhi, SHAO Dongguo, GU Wenquan. Effects of temperature and soil moisture on gross nitrification and denitrification rates of a Chinese lowland paddy field soil[J]. Paddy and Water Environment, 2018, 16(4):687-698. |
53 | BAESEMAN J L, SMITH R L, SILVERSTEIN J. Denitrification potential in stream sediments impacted by acid mine drainage: effects of pH, various electron donors, and iron[J]. Microbial Ecology, 2006, 51(2): 232-241. |
54 | Conrad NÄGELE R. Influence of pH on the release of NO and N2O from fertilized and unfertilized soil[J]. Biology and Fertility of Soils, 1990,10(2):139-144. |
55 | MARIA Teresa, RONALD F, Rusch KELLY A. Evaluation of polyhydroxybutyrate as a carbon source for recirculating aquaculture water denitrification[J]. Aquacultural Engineering, 2012, 21(3): 32-41. |
56 | THOMAS J, LYNN T, SARINA J, et al. Effect of hydrodynamic dispersion in denitrifying wood-chip stormwater biofilters[J]. Journal of Sustainable Water in the Built Environment, 2016, 121(2): 1232-1241. |
57 | CHEN Chuan, Kuolin HO, LIU Fachi, et al. Autotrophic and heterotrophic denitrification by a newly isolated strain Pseudoonassp[J]. Bioresource Technology, 2013, 145(3): 232-241. |
58 | ZHAO Yingxin, FENG Chuanping, Wang Qinghong, et al. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor[J]. Journal of Hazardous Materials, 2011, 192(3): 1033-1039. |
59 | HUANG G, FALLOWFIELD H, GUAN H, et al. Remediation of nitrate-nitrogen contaminated groundwater by a heterotrophic-autotrophic denitrification approach in an aerobic environment[J]. Water Air and Soil Pollution, 2012, 223(7): 4029-4038. |
60 | AN Yi, LI Tielong, JIN Zhaohui, et al. Effect of bimetallic and polymer-coated Fe nanoparticles on biological denitrification[J]. Bioresource Technology, 2010, 101(24): 32-41. |
61 | OH S E, YOO Y B, YOUNG J C, et al. Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions[J]. Journal of Biotechnology, 2001, 92(1): 1-8. |
62 | 李祥, 马航, 黄勇, 等. 异养与硫自养反硝化协同处理高硝氮废水特性研究[J]. 环境科学, 2016, 37(7): 2646-2651. |
LI X, MA H, HUANG Y, et al. Study on the characteristics of synergistic treatment of high nitrate-nitrogen wastewater by heterotrophic and sulfur autotrophic denitrification[J]. Environmental Sciences, 2016, 37(7): 2646-2651. | |
63 | SHEN Zhiqiang, ZHOU Yuexi, WANG Jianlong. Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal[J]. Bioresource Technology, 2013, 131(2): 1-8. |
64 | ROBERTSON W D, PTACEK C J, BROWN S J. Rates of nitrate and perchlorate removal in a 5-year-old wood particle reactor treating agricultural drainage[J]. Groundwater Monitoring & Remediation, 2010, 29(2): 87-94. |
65 | CAO Wenping. Nitrogenous compounds removal from recalcitrant wastewaters using biofilms on filamentous bamboo[J]. Desalination and Water Treatment, 2016, 57(30): 12-25. |
[1] | 王莹, 韩云平, 李琳, 李衍博, 李慧丽, 颜昌仁, 李彩侠. 城市污水厂病毒气溶胶逸散特征研究现状与未来展望[J]. 化工进展, 2023, 42(S1): 439-446. |
[2] | 李宁, 李金科, 董金善. 乙烯裂解炉多孔介质燃烧器的研究与开发[J]. 化工进展, 2023, 42(S1): 73-83. |
[3] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[4] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[5] | 王雪婷, 顾霞, 徐先宝, 赵磊, 薛罡, 李响. 水热预处理对餐厨垃圾厌氧发酵产戊酸的影响[J]. 化工进展, 2023, 42(9): 4994-5002. |
[6] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[7] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[8] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[9] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[10] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[11] | 刘洋, 叶小梅, 苗晓, 王成成, 贾昭炎, 曹春晖, 奚永兰. 农村有机生活垃圾干发酵氨胁迫下中试工艺[J]. 化工进展, 2023, 42(7): 3847-3854. |
[12] | 李白雪, 信欣, 朱羽蒙, 刘琴, 刘鑫. SASD-A体系构建及进水不同S/N对脱氮工艺的影响机制[J]. 化工进展, 2023, 42(6): 3261-3271. |
[13] | 曾天续, 张永显, 严渊, 刘宏, 马娇, 党鸿钟, 吴新波, 李维维, 陈永志. 羟胺对硝化菌活性及其动力学参数的影响[J]. 化工进展, 2023, 42(6): 3272-3280. |
[14] | 庄捷, 薛锦辉, 赵斌成, 张文艺. 猪粪厌氧消化进程中重金属与腐殖质的有机结合机制[J]. 化工进展, 2023, 42(6): 3281-3291. |
[15] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |