化工进展 ›› 2021, Vol. 40 ›› Issue (4): 2298-2307.DOI: 10.16085/j.issn.1000-6613.2020-0967
收稿日期:
2020-06-01
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
吕永康
作者简介:
宋慧赟(1995—),女,硕士研究生,研究方向为污水生物处理。E-mail:基金资助:
SONG Huiyun1(), WANG Ying1, CHEN Hu2, LYU Yongkang1,2()
Received:
2020-06-01
Online:
2021-04-05
Published:
2021-04-14
Contact:
LYU Yongkang
摘要:
近年来,新型生物脱氮技术处理高盐含氮废水引起广泛关注,可耐受一定盐度的同时去除废水中的氮素,克服了传统生物脱氮存在的反应器占地面积大、工艺流程长和运行成本偏高等问题。本文综述了盐度对基于硝化-反硝化生化过程的新型脱氮技术(同步硝化反硝化技术和短程硝化反硝化技术)和基于厌氧氨氧化反应的新型脱氮技术[厌氧氨氧化技术、部分硝化-厌氧氨氧化技术、全程自养脱氮工艺(CANON)、限氧亚硝化与厌氧氨氧化相耦合(OLAND)]的影响。通过综述发现在盐度耐受范围内,新型技术脱氮性能影响较小,甚至会促进新型工艺脱氮,而超过一定范围后会显著抑制新型技术的脱氮性能,这主要是新型技术中多种微生物的相互作用及其自身活性受到盐度影响所致,在反应器中添加嗜盐菌和经过一定盐度驯化的微生物可处理更高盐度的含氮废水。最后文章指出加强盐度对新型脱氮技术中微生物群落结构及代谢模式的影响分析、耐盐脱氮微生物的筛选应用及微生物耐盐响应机制的研究是改进和提高自身技术处理性能的根本,已成为高盐含氮废水处理的研究方向。
中图分类号:
宋慧赟, 王莹, 陈虎, 吕永康. 盐度对新型生物脱氮技术影响的研究进展[J]. 化工进展, 2021, 40(4): 2298-2307.
SONG Huiyun, WANG Ying, CHEN Hu, LYU Yongkang. Effects of salinity on new biological nitrogen removal technology: a review[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2298-2307.
新型生物脱氮技术 | 盐浓度及去除效果 | 结论 |
---|---|---|
同步硝化反硝化技术 | 盐度为2.4%、初始氨氮浓度为40mg·L-1,氨氮去除率达到90%以上;盐度大于1.6%时,检测到大量的NO | 盐度在3%以内时,可达到一定的脱氮效果。由于盐度的存在,完全硝化反硝化逐步由部分硝化反硝化取代成为主要的脱氮方式; 添加经过盐度驯化的微生物和嗜盐菌株采用同步硝化反硝化技术处理高盐废水时,可处理更高盐度(盐度大于2%)的含氮废水并达到一定处理效果 |
盐度增加到3%时,初始氨氮浓度约为40mg·L-1,检测到NO | ||
初始氨氮浓度约为200mg·L-1,盐度不高于3%时,总氮去除率达到90%以上;盐度达到3%时,亚硝酸盐大量积累[ | ||
初始氨氮浓度为100mg·L-1,盐度为3%时,废水中总氮去除率达到90%以上[ | ||
初始氨氮浓度为15mg·L-1,盐度为28g·L-1时,NO | ||
初始氨氮浓度为400mg·L-1,盐度为1%~5%时,氨氮的去除率为70%左右[ | ||
初始氨氮浓度为20mg·L-1,盐度为2%~4%时,氨氮的去除率为70%~80%[ | ||
氨氮从119.77mg·L-1降至10.96mg·L-1,盐度为3%时,去除率可达90.86%[ | ||
初始氨氮浓度为300mg/L-1,盐度为5%时,氨氮的去除率为接近98%[ | ||
初始TN浓度为30~45mg·L-1,盐度为5%~7%时,添加嗜盐菌的反应器中总氮去除率达到60%以上[ | ||
短程硝化反硝化技术 | 初始总氮浓度约为235mg·L-1,氨氮浓度约为135mg·L-1,盐度为30g·L-1时,出水中总氮去除率高于95%[ | 系统在盐度耐受范围内,脱氮性能几乎不受影响;超过一定的盐度范围,脱氮能力下降 |
初始氨氮浓度为32.6~53.2mg·L-1,盐度为0.5%、0.75%时,总无机氮去除效率达到80%以上[ | ||
氨氮(初始值约为36.2mg·L-1)在盐浓度低于0.75%时几乎完全降解,在盐浓度为1.2%时氨氮浓度降解几乎降低一半[ | ||
进水氨氮为200mg·L-1,盐度为5g·L-1和10g·L-1时,NH | ||
初始氨浓度为60mg·L-1,盐度为5~37.7g·L-1时,氨氮的去除效率达到98.5%;盐浓度继续增加到41.9g·L-1时,氨氮和TN的去除效率分别下降到43.7%和46.2%[ | ||
厌氧氨氧化技术 | 盐度小于12g·L-1时厌氧氨氧化活性提高,但盐度继续增加时会显著抑制厌氧氨氧化活性[ | 不同厌氧氨氧化菌在其可承受的盐度范围内,盐度对系统的脱氮性能具有一定的促进作用,超过耐受值时,系统脱氮能力降低 |
NaCl浓度低于8.7g·L-1时,不会影响Anammox活性,并且观察到NaCl为 13.5g·L-1时凋亡细胞占总细胞的一半[ | ||
盐度为0~20g·L-1时,脱氮效率超过80%;盐度大于30g·L-1时,系统脱氮效率降低[ | ||
盐度为2.5~30g·L-1时,总氮去除率超过75%;盐度大于30g·L-1时,脱氮效率比对照组下降了60%左右[ | ||
30g·L-1 NaCl的冲击载荷是维持Anammox稳定性的阈值[ | ||
部分硝化-厌氧氨氧化 技术 | 初始氨氮浓度大于200mg·L-1,采用逐步添加盐度的方式,盐度为10g·L-1时,总氮去除效率达到80%以上;突然加盐的方式时,系统只能处理盐度在5g·L-1以下的废水[ | 盐度在5g·L-1之内时,系统脱氮效果几乎不受影响。采用逐步加盐的方式可使系统适应更高的盐度 |
初始氨浓度为200mg·L-1,盐度不高于2%、盐度梯度为0.5%时,脱氮性能稳定;盐度升高至5%时,系统崩溃且脱氮性能不再恢复[ | ||
进水氨氮浓度约为150mg·L-1,当盐度达到2.4%时,总氮去除速率最终下降至0.42kg·m-3·d-1[ | ||
CANON工艺 | 盐度高达15g·L-1时,总氮去除率高达72.6%;盐度为20g·L-1时,脱氮性能的快速下降[ | |
盐度为25g·L-1和45g·L-1时,氨氮去除率下降到约50%和25%[ | ||
OLAND工艺 | 盐度为30g·L-1时,氮去除能力降低31%[ |
表1 6种新型生物脱氮工艺降解高盐废水的处理效果
新型生物脱氮技术 | 盐浓度及去除效果 | 结论 |
---|---|---|
同步硝化反硝化技术 | 盐度为2.4%、初始氨氮浓度为40mg·L-1,氨氮去除率达到90%以上;盐度大于1.6%时,检测到大量的NO | 盐度在3%以内时,可达到一定的脱氮效果。由于盐度的存在,完全硝化反硝化逐步由部分硝化反硝化取代成为主要的脱氮方式; 添加经过盐度驯化的微生物和嗜盐菌株采用同步硝化反硝化技术处理高盐废水时,可处理更高盐度(盐度大于2%)的含氮废水并达到一定处理效果 |
盐度增加到3%时,初始氨氮浓度约为40mg·L-1,检测到NO | ||
初始氨氮浓度约为200mg·L-1,盐度不高于3%时,总氮去除率达到90%以上;盐度达到3%时,亚硝酸盐大量积累[ | ||
初始氨氮浓度为100mg·L-1,盐度为3%时,废水中总氮去除率达到90%以上[ | ||
初始氨氮浓度为15mg·L-1,盐度为28g·L-1时,NO | ||
初始氨氮浓度为400mg·L-1,盐度为1%~5%时,氨氮的去除率为70%左右[ | ||
初始氨氮浓度为20mg·L-1,盐度为2%~4%时,氨氮的去除率为70%~80%[ | ||
氨氮从119.77mg·L-1降至10.96mg·L-1,盐度为3%时,去除率可达90.86%[ | ||
初始氨氮浓度为300mg/L-1,盐度为5%时,氨氮的去除率为接近98%[ | ||
初始TN浓度为30~45mg·L-1,盐度为5%~7%时,添加嗜盐菌的反应器中总氮去除率达到60%以上[ | ||
短程硝化反硝化技术 | 初始总氮浓度约为235mg·L-1,氨氮浓度约为135mg·L-1,盐度为30g·L-1时,出水中总氮去除率高于95%[ | 系统在盐度耐受范围内,脱氮性能几乎不受影响;超过一定的盐度范围,脱氮能力下降 |
初始氨氮浓度为32.6~53.2mg·L-1,盐度为0.5%、0.75%时,总无机氮去除效率达到80%以上[ | ||
氨氮(初始值约为36.2mg·L-1)在盐浓度低于0.75%时几乎完全降解,在盐浓度为1.2%时氨氮浓度降解几乎降低一半[ | ||
进水氨氮为200mg·L-1,盐度为5g·L-1和10g·L-1时,NH | ||
初始氨浓度为60mg·L-1,盐度为5~37.7g·L-1时,氨氮的去除效率达到98.5%;盐浓度继续增加到41.9g·L-1时,氨氮和TN的去除效率分别下降到43.7%和46.2%[ | ||
厌氧氨氧化技术 | 盐度小于12g·L-1时厌氧氨氧化活性提高,但盐度继续增加时会显著抑制厌氧氨氧化活性[ | 不同厌氧氨氧化菌在其可承受的盐度范围内,盐度对系统的脱氮性能具有一定的促进作用,超过耐受值时,系统脱氮能力降低 |
NaCl浓度低于8.7g·L-1时,不会影响Anammox活性,并且观察到NaCl为 13.5g·L-1时凋亡细胞占总细胞的一半[ | ||
盐度为0~20g·L-1时,脱氮效率超过80%;盐度大于30g·L-1时,系统脱氮效率降低[ | ||
盐度为2.5~30g·L-1时,总氮去除率超过75%;盐度大于30g·L-1时,脱氮效率比对照组下降了60%左右[ | ||
30g·L-1 NaCl的冲击载荷是维持Anammox稳定性的阈值[ | ||
部分硝化-厌氧氨氧化 技术 | 初始氨氮浓度大于200mg·L-1,采用逐步添加盐度的方式,盐度为10g·L-1时,总氮去除效率达到80%以上;突然加盐的方式时,系统只能处理盐度在5g·L-1以下的废水[ | 盐度在5g·L-1之内时,系统脱氮效果几乎不受影响。采用逐步加盐的方式可使系统适应更高的盐度 |
初始氨浓度为200mg·L-1,盐度不高于2%、盐度梯度为0.5%时,脱氮性能稳定;盐度升高至5%时,系统崩溃且脱氮性能不再恢复[ | ||
进水氨氮浓度约为150mg·L-1,当盐度达到2.4%时,总氮去除速率最终下降至0.42kg·m-3·d-1[ | ||
CANON工艺 | 盐度高达15g·L-1时,总氮去除率高达72.6%;盐度为20g·L-1时,脱氮性能的快速下降[ | |
盐度为25g·L-1和45g·L-1时,氨氮去除率下降到约50%和25%[ | ||
OLAND工艺 | 盐度为30g·L-1时,氮去除能力降低31%[ |
1 | ASLAN S, ŞEKERDAĞ N. Salt inhibition on anaerobic treatment of high salinity wastewater by upflow anaerobic sludge blanket (UASB) reactor[J]. Desalination and Water Treatment, 2015, 57(28): 12998-13004. |
2 | WOOLARD C R, IRVINE R L. Tretatment of hypersaline wastewater in the sequencing batch reactor[J]. Water Research, 1995, 29(4): 1159-1168. |
60 | WANG H T, GILBERT J A, ZHU Y G, et al. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment[J]. Science of the Total Environment, 2018, 631/632: 1342-1349. |
61 | AHNEN M VON, AALTO S L, SUURNÄKKI S, et al. Salinity affects nitrate removal and microbial composition of denitrifying woodchip bioreactors treating recirculating aquaculture system effluents[J]. Aquaculture, 2019, 504: 182-189. |
3 | SHI Z, ZHANG Y, ZHOU J T, et al. Biological removal of nitrate and ammonium under aerobic atmosphere by Paracoccusversutus LYM[J]. Bioresource Technology, 2013, 148: 144-148. |
4 | 周少奇.环境生物技术[M].北京: 科学出版社,2003: 119-120. |
62 | DENG Y L, RUAN Y J, ZHU S M, et al. The impact of DO and salinity on microbial community in poly(butylene succinate) denitrification reactors for recirculating aquaculture system wastewater treatment[J]. AMB Express, 2017, 7(1): 113. |
63 | ONTIVEROS-VALENCIA A, TANG Y, KRAJMALNIK-BROWN R, et al. Managing the interactions between sulfate and perchlorate-reducing bacteria when using hydrogen-fed biofilms to treat a groundwater with a high perchlorate concentration[J]. Water Research, 2014, 55: 215-224. |
4 | ZHOU S Q. Environmental biotechnology[M]. Beijing: Science Press, 2003: 119-120. |
5 | HE Q L, WANG H Y, CHEN L, et al. Robustness of an aerobic granular sludge sequencing batch reactor for low strength and salinity wastewater treatment at ambient to winter temperatures[J]. Journal of Hazardous Materials, 2020, 384: 121454. |
6 | HUANG W Y, SHE Z L, GAO M C, et al. Effect of anaerobic/aerobic duration on nitrogen removal and microbial community in a simultaneous partial nitrification and denitrification system under low salinity[J]. The Science of the Total Environment, 2019, 651(1): 859-870. |
7 | QIAN J, ZHANG M K, WU Y G, et al. A feasibility study on biological nitrogen removal (BNR) via integrated thiosulfate-driven denitratation with anammox[J]. Chemosphere, 2018, 208: 793-799. |
8 | DU R, CAO S B, PENG Y Z, et al. Combined partial denitrification (PD)-anammox: a method for high nitrate wastewater treatment[J]. Environment International, 2019, 126: 707-716. |
64 | WANG Z C, GAO M C, REN Y, et al. Effect of hydraulic retention time on performance of an anoxic-aerobic sequencing batch reactor treating saline wastewater[J]. International Journal of Environmental Science and Technology, 2014, 12(6): 2043-2054. |
65 | AHMADI M, JORFI S, KUJLU R, et al. A novel salt-tolerant bacterial consortium for biodegradation of saline and recalcitrant petrochemical wastewater[J]. Journal of Environmental Management, 2017, 191: 198-208. |
9 | LU Y, FENG L J, YANG G F, et al. Intensification and microbial pathways of simultaneous nitrification-denitrification in asequencing batch biofilm reactor forseawater-based saline wastewater treatment[J]. Chemical Technology and Biotechnology, 2018, 93(9): 2766-2773. |
10 | CHEN X Z, WANG X J, CHEN X K, et al. Salt inhibition on partial nitritation performance of ammonium-rich saline wastewater in the zeolite biological aerated filter[J]. Bioresource Technology, 2019, 280: 287-294. |
11 | JI J T, PENG Y Z, WANG B, et al. Effects of salinity build-up on the performance and microbial community of partial-denitrification granular sludge with high nitrite accumulation[J]. Chemosphere, 2018, 209: 53-60. |
12 | GOGINA E, GULSHIN I. Simultaneous nitrification and denitrification with low dissolved oxygen level and C/N ratio[J]. Procedia Engineering, 2016, 153: 189-194. |
13 | XIA Z G, WANG Q, SHE Z L, et al. Nitrogen removal pathway and dynamics of microbial community with the increase of salinity in simultaneous nitrification and denitrification process[J]. The Science of the Total Environment, 2019, 697: 134047. |
14 | SHE Z L, ZHAO L T, ZHANG X L, et al. Partial nitrification and denitrification in a sequencing batch reactor treating high-salinity wastewater[J]. Chemical Engineering Journal, 2016, 288: 207-215. |
15 | HE Q L, WANG H Y, CHEN L, et al. Elevated salinity deteriorated enhanced biological phosphorus removal in an aerobic granular sludge sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal[J]. Journal of Hazardous Materials, 2020, 390: 121782. |
16 | SHE Z L, WU L, WANG Q, et al. Salinity effect on simultaneous nitrification and denitrification, microbial characteristics in a hybrid sequencing batch biofilm reactor[J]. Bioprocess and Biosystems Engineering, 2018, 41(1): 65-75. |
17 | WANG J L, GONG B Z, HUANG W, et al. Bacterial community structure in simultaneous nitrification, denitrification and organic matter removal process treating saline mustard tuber wastewater as revealed by 16S rRNA sequencing[J]. Bioresource Technology, 2017, 228: 31-38. |
18 | WANG J L, GONG B Z, WANG Y M, et al. The potential multiple mechanisms and microbial communities in simultaneous nitrification and denitrification process treating high carbon and nitrogen concentration saline wastewater[J]. Bioresource Technology, 2017, 243: 708-715. |
19 | HONG J M, LI W B, LIN B, et al. Deciphering the effect of salinity on the performance of submerged membrane bioreactor for aquaculture of bacterial community[J]. Desalination, 2013, 316: 23-30. |
20 | JIN R F, LIU T Q, LIU G F, et al. Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium Pseudomonas sp. ADN-42[J]. Applied Biochemistry and Biotechnology, 2014, 175(4): 2000-2011. |
21 | HUANG F, PAN L Q, LV N, et al. Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification-aerobic denitrification[J]. Journal of Bioscience and Bioengineering, 2017, 124(5): 564-571. |
22 | DUAN J M, FANG H D, SU B, et al. Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater[J]. Bioresource Technology, 2015, 179: 421-428. |
23 | CORSINO S F, CAPODICI M, MORICI C, et al. Simultaneous nitritation-denitritation for the treatment of high-strength nitrogen in hypersaline wastewater by aerobic granular sludge[J]. Water Research, 2016, 88: 329-336. |
24 | SHI K, ZHOU W Z, ZHAO H X, et al. Performance of halophilic marine bacteria inocula on nutrient removal from hypersaline wastewater in an intermittently aerated biological filter[J]. Bioresource Technology, 2012, 113: 280-287. |
25 | ZHANG Z J, CHEN S H, WU P, et al. Start-up of the CANON process from activated sludge under salt stress in a sequencing batch biofilm reactor (SBBR)[J]. Bioresource Technology, 2010, 101(16): 6309-6314. |
26 | WEI D, ZHANG K Y, NGO H H, et al. Nitrogen removal via nitrite in a partial nitrification sequencing batch biofilm reactor treating high strength ammonia wastewater and its greenhouse gas emission[J]. Bioresource Technology, 2017, 230: 49-55. |
27 | CAPODICI M, CORSINO S F, TORREGROSSA M, et al. Shortcut nitrification-denitrification by means of autochthonous halophilic biomass in an SBR treating fish-canning wastewater[J]. Journal of Environmental Management, 2018, 208: 142-148. |
66 | BURGESS J E, PLETSCHKE B I. Hydrolytic enzymes in sewage sludge treatment: a mini-review[J]. Water SA, 2008, 34: 343-349. |
67 | LI W, LI H, LIU Y D, et al. Salinity-aided selection of progressive onset denitrifiers as a means of providing nitrite for ANAMMOX[J]. Environmental Science Technology, 2018, 52(18): 10665-10672. |
68 | WANG J l, ZHOU J, WANG Y m, et al. Efficient nitrogen removal in a modified sequencing batch biofilm reactor treating hypersaline mustard tuber wastewater: the potential multiple pathways and key microorganisms[J]. Water Research, 2020, 177: 115734. |
28 | YUAN C S, PENG Y Z, WANG B, et al. Facilitating sludge granulation and favoring glycogen accumulating organisms by increased salinity in an anaerobic/micro-aerobic simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) process[J]. Bioresour Technology, 2020, 313: 123698. |
29 | YE L, PENG C Y, TANG B, et al. Determination effect of influent salinity and inhibition time on partial nitrification in a sequencing batch reactor treating saline sewage[J]. Desalination, 2009, 246: 556-566. |
30 | LI J B, YE W, WEI D, et al. System performance and microbial community succession in a partial nitrification biofilm reactor in response to salinity stress[J]. Bioresource Technology, 2018, 270: 512-518. |
31 | MOSQUERA-CORRAL A, GONZáLEZ F, CAMPOS J L, et al. Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds[J]. Process Biochemistry, 2005, 40(9): 3109-3118. |
32 | STROUS M, GERVEN V E, ZHENG P, et al. Anmonium removal from concentrated waste streams with the anaerobic ammonium oxidation (ANAMMOX) process in different configurations[J]. Water Research, 1997, 31(8): 1995-1962. |
33 | MAO N J, REN H Q, GENG J J, et al. Engineering application of anaerobic ammonium oxidation process in wastewater treatment[J]. World Journal of Microbiology & Biotechnology, 2017, 33(8): 153. |
34 | JIN R C, YANG G F, YU J J, et al. The inhibition of the ANAMMOX process: a review[J]. Chemical Engineering Journal, 2012, 197: 67-79. |
35 | CHEN H, MA C, JI Y X, et al. Evaluation of the efficacy and regulation measures of the ANAMMOX process under salty conditions[J]. Separation and Purification Technology, 2014, 132: 584-592. |
36 | WANG G J, TANG Z K, WEI J, et al. Effect of salinity on ANAMMOX nitrogen removal efficiency and sludge properties at low temperature[J]. Environmental Technology, 2019, 41: 2920-2927. |
37 | DAPENA-MORA A, CAMPOS J L, MOSQUERA-CORRAL A, et al. ANAMMOX process for nitrogen removal from anaerobically digested fish canning effluents[J]. Water Science Technology, 2006, 53(12): 265-274. |
38 | WANG X D, WANG Y Y, SONG S K, et al. Impact of salinity on the performance and microbial community of anaerobic ammonia oxidation (ANAMMOX) using 16S rRNA high throughput sequencing technology[J]. Global NEST Journal, 2017, 19(3): 377-388. |
39 | 刘成良,刘可慧,李天煜,等. 盐度对厌氧氨氧化(ANAMMOX)生物脱氮效率的影响研究[J]. 环境科学学报, 2011, 31(9): 1919-1924. |
LIU C L, LIU K H, LI T Y, et al. Effects of salinity on nitrogen removal with the ANAMMOX process[J]. Acta Scientiae Circumstantiae, 2011, 31(9): 1919-1924. | |
40 | MA C, JIN R C, YANG G F, et al. Impacts of transient salinity shock loads on ANAMMOX process performance[J]. Bioresource Technology, 2012, 112: 124-130. |
41 | DAPENA-MORA A, VAZQUEZ-PADIN J R, CAMPOS J L, et al. Monitoring the stability of an ANAMMOX reactor under high salinity conditions[J]. Biochemical Engineering Journal, 2010, 51(3): 167-171. |
42 | FERNANDEZ I, VAZQUEZ-PADIN J R, MOSQUERA-CORRAL A, et al. Biofilm and granular systems to improve ANAMMOX biomass retention[J]. Biochemical Engineering Journal, 2008, 42(3): 308-313. |
43 | LIU M, PENG Y Z, WANG S Y, et al. Enhancement of ANAMMOX activity by addition of compatible solutes at high salinity conditions[J]. Bioresource Technology, 2014, 167: 560-563. |
44 | ZHANG F Z, PENG Y Z, MIAO L, et al. A novel simultaneous partial nitrification ANAMMOX and denitrification (SNAD) with intermittent aeration for cost-effective nitrogen removal from mature landfill leachate[J]. Chemical Engineering Journal, 2017, 313: 619-628. |
45 | VAL DEL RIO A, PICHEL A, FERNANDEZ-GONZALEZ N, et al. Performance and microbial features of the partial nitritation-ANAMMOX process treating fish canning wastewater with variable salt concentrations[J]. Journal of Environmental Management, 2018, 208: 112-121. |
46 | GE C H, DONG Y, LI H M, et al. Nitritation-ANAMMOX process—A realizable and satisfactory way to remove nitrogen from high saline wastewater[J]. Bioresource Technology, 2019, 275: 86-93. |
47 | LI X, YUAN Y, YUAN Y, et al. Effects of salinity on the denitrification efficiency and community structure of a combined partial nitritation- anaerobic ammonium oxidation process[J]. Bioresource Technology, 2018, 249: 550-556. |
48 | LIU C C, YU D S, WANG Y Y, et al. A novel control strategy for the partial nitrification and ANAMMOX process (PN/A) of immobilized particles: using salinity as a factor[J]. Bioresoure Technology, 2020, 302: 122864. |
49 | THIRD K A, SLIEKERS A O, KUENEN J G, et al. The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria[J]. Systematic and Applied Microbiology, 2001, 24(4): 588-596. |
50 | WANG Y Y, CHEN J, ZHOU S, et al. 16S rRNA gene high-throughput sequencing reveals shift in nitrogen conversion related microorganisms in a CANON system in response to salt stress[J]. Chemical Engineering Journal, 2017, 317: 512-521. |
51 | GARCÍA-RUIZ M J, CASTELLANO-HINOJOSA A, GONZÁLEZ-LÓPEZ J, et al. Effects of salinity on the nitrogen removal efficiency and bacterial community structure in fixed-bed biofilm CANON bioreactors[J]. Chemical Engineering Journal, 2018, 347: 156-164. |
52 | 赖政钢, 褚淑祎, 崔灵周, 等. 限制自养硝化反硝化工艺脱氮机制及强化研究进展[J]. 浙江农林大学学报, 2017, 34(5): 934-941. |
LAI Z G, CHU S Y, CUI L Z, et al. Research on the mechanism and strengthening of OLAND process[J]. Journal of Zhejiang A&F University, 2017, 34(5): 934-941. | |
53 | WINDEY K, DE BO I, VERSTRAETE W. Oxygen-limited autotrophic nitrification-denitrification (OLAND) in a rotating biological contactor treating high-salinity wastewater[J]. Water Research, 2005, 39(18): 4512-4520. |
54 | BASSIN J P, DEZOTTI M, SANT'ANNA G L JR. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor[J]. Journal of Hazardous Materials, 2011, 185(1): 242-248. |
55 | OZALP G, GOMEC C Y, OZTURK I, et al. Effect of high salinity on anaerobic treatment of low strength effluents[J]. Water Science Technology, 2004, 48(11/12): 207-212. |
56 | WANG J L, ZHAN X M, FENG Y C, et al. Effect of salinity variations on the performance of activated sludge system[J]. Biomedicaland Environmental Sciences, 2005, 18(1):5-8. |
57 | BELLA G D, TRAPANI D D, TORREGROSSA M, et al. Performance of a MBR pilot plant treating high strength wastewater subject to salinity increase: analysis of biomass activity and fouling behaviour[J]. Bioresource Technology, 2013, 147: 614-618. |
58 | LI L L. Study of biological treatment of high-salinity[D]. Qingdao: Ocean University of China, 2006. |
59 | FU G P, YU T Y, HUANGSHEN L K, et al. The influence of complex fermentation broth on denitrification of saline sewage in constructed wetlands by heterotrophic nitrifying/aerobic denitrifying bacterial communities[J]. Bioresource Technology, 2018, 250: 290-298. |
[1] | 王莹, 韩云平, 李琳, 李衍博, 李慧丽, 颜昌仁, 李彩侠. 城市污水厂病毒气溶胶逸散特征研究现状与未来展望[J]. 化工进展, 2023, 42(S1): 439-446. |
[2] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[3] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[4] | 李宁, 李金科, 董金善. 乙烯裂解炉多孔介质燃烧器的研究与开发[J]. 化工进展, 2023, 42(S1): 73-83. |
[5] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[6] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[7] | 王琦, 寇丽红, 王冠宇, 王吉坤, 刘敏, 李兰廷, 王昊. 焦化废水生物出水中可溶解性有机物的分子识别[J]. 化工进展, 2023, 42(9): 4984-4993. |
[8] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[9] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[10] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[11] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[12] | 陈娜, 张肖静, 张楠, 马冰冰, 张涵, 杨浩洁, 张宏忠. 淬灭酶对亚硝化-混合自养脱氮系统的影响[J]. 化工进展, 2023, 42(7): 3816-3823. |
[13] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[14] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[15] | 李白雪, 信欣, 朱羽蒙, 刘琴, 刘鑫. SASD-A体系构建及进水不同S/N对脱氮工艺的影响机制[J]. 化工进展, 2023, 42(6): 3261-3271. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |