化工进展 ›› 2021, Vol. 40 ›› Issue (4): 2308-2317.DOI: 10.16085/j.issn.1000-6613.2020-0978
收稿日期:
2020-06-02
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
赵权宇
作者简介:
钟雪晴(1995—),硕士研究生,研究方向为微藻生物技术。E-mail:基金资助:
ZHONG Xueqing1(), ZHU Yali1, WANG Yujiao2, ZHAO Quanyu2()
Received:
2020-06-02
Online:
2021-04-05
Published:
2021-04-14
Contact:
ZHAO Quanyu
摘要:
抗生素在环境水体的累积是威胁人类健康及生态安全的全球性问题,去除环境中残留抗生素迫在眉睫。本文首先综述了环境中抗生素残留的主要来源及危害。随后,针对微藻处理含抗生素废水的特点,阐述微藻去除抗生素的生物降解、生物累积、生物表面吸附、光合降解和挥发及水解等这5种可能去除机制,比较了这些机制在不同微藻去除抗生素实验研究中的贡献。阐明为提高微藻法去除抗生素的效率,尚需优化藻种的选择和培养条件。最后,讨论了微藻法去除抗生素目前存在的去除不完全、降解产物不明了及缺乏规模化应用等问题,提出可以结合化学、物理和生物方法达到去除要求;通过组学数据等综合分析抗生素降解产物;积累中试数据,为进一步的规模化应用打下基础。
中图分类号:
钟雪晴, 朱雅莉, 王玉娇, 赵权宇. 含抗生素废水的微藻处理技术及其进展[J]. 化工进展, 2021, 40(4): 2308-2317.
ZHONG Xueqing, ZHU Yali, WANG Yujiao, ZHAO Quanyu. Progress on antibiotic wastewater treatment by microalgae[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2308-2317.
抗生素大类 | 名称 | 缩写 | 检测最大浓度/ng·L-1 | 检测水种类 | 检测的国家 | 参考文献 |
---|---|---|---|---|---|---|
β-内酰胺类 | 阿莫西林 | AMX | 128 | 海水 | 希腊 | [ |
60 | 河水 | 肯尼亚 | [ | |||
120 | 废水 | |||||
氨苄青霉素 | AMP | 290 | 河水 | 肯尼亚 | [ | |
790 | 废水 | |||||
磺胺类 | 磺胺噻唑 | STZ | 121 | 地表水(黄浦江) | 中国 | [ |
磺胺嘧啶 | SDZ | 505 | 地表水(白洋淀湖) | 中国 | [ | |
108 | 江河水 | 越南 | [ | |||
5 | 海水 | 希腊 | [ | |||
磺胺二甲嘧啶 | SMT | 654 | 地表水(太湖) | 中国 | [ | |
磺胺吡啶 | SPD | 103 | 地表水(黄浦江) | 中国 | [ | |
磺胺甲基嘧啶 | SMR | 16.41 | 地表水 | 美国 | [ | |
磺胺甲唑 | SMX | 13.765 | 江河水 | 肯尼亚 | [ | |
940 | 地表水(白洋淀湖) | 中国 | [ | |||
54.04 | 地下水 | 美国 | [ | |||
喹诺酮类 | 恩诺沙星 | ENR | 1140 | 沉积物(白洋淀湖) | 中国 | [ |
诺氟沙星 | NOR | 256.03 | 地表水(辽河) | 中国 | [ | |
洛美沙星 | LOM | 5.5 | 地表水(巢湖) | 中国 | [ | |
氧氟沙星 | OFL | 82.8 | 地表水(太湖) | 中国 | [ | |
四环素类 | 氧四环素 | OTC | 48.7 | 地表水(鄱阳湖) | 中国 | [ |
四环素 | TC | 87.9 | 地表水(太湖) | 中国 | [ | |
氯四环素 | CTC | 142.5 | 地表水(太湖) | 中国 | [ | |
大环内酯类 | 克拉霉素 | CLA | 1.5 | 海水 | 希腊 | [ |
105 | 地表水(扬子江) | 中国 | [ | |||
443 | 地表水 | 韩国 | [ | |||
泰乐菌素 | TYL | 1.88 | 地表水(白洋淀湖) | 中国 | [ | |
螺旋霉素 | SPI | 2.92 | 地表水(白洋淀湖) | 中国 | [ | |
红霉素 | ERM | 17.66 | 地下水 | 美国 | [ | |
林可酰胺类 | 林可霉素 | LIN | 64.5 | 地表水(巢湖) | 中国 | [ |
克林霉素 | CLD | 46.7 | 地表水(巢湖) | 中国 | [ | |
甲氧苄氨嘧啶 | 甲氧苄氨嘧啶 | TMP | 40.8 | 地表水(太湖) | 中国 | [ |
265 | 江河水 | 肯尼亚 | [ |
表1 环境样本中典型抗生素浓度
抗生素大类 | 名称 | 缩写 | 检测最大浓度/ng·L-1 | 检测水种类 | 检测的国家 | 参考文献 |
---|---|---|---|---|---|---|
β-内酰胺类 | 阿莫西林 | AMX | 128 | 海水 | 希腊 | [ |
60 | 河水 | 肯尼亚 | [ | |||
120 | 废水 | |||||
氨苄青霉素 | AMP | 290 | 河水 | 肯尼亚 | [ | |
790 | 废水 | |||||
磺胺类 | 磺胺噻唑 | STZ | 121 | 地表水(黄浦江) | 中国 | [ |
磺胺嘧啶 | SDZ | 505 | 地表水(白洋淀湖) | 中国 | [ | |
108 | 江河水 | 越南 | [ | |||
5 | 海水 | 希腊 | [ | |||
磺胺二甲嘧啶 | SMT | 654 | 地表水(太湖) | 中国 | [ | |
磺胺吡啶 | SPD | 103 | 地表水(黄浦江) | 中国 | [ | |
磺胺甲基嘧啶 | SMR | 16.41 | 地表水 | 美国 | [ | |
磺胺甲唑 | SMX | 13.765 | 江河水 | 肯尼亚 | [ | |
940 | 地表水(白洋淀湖) | 中国 | [ | |||
54.04 | 地下水 | 美国 | [ | |||
喹诺酮类 | 恩诺沙星 | ENR | 1140 | 沉积物(白洋淀湖) | 中国 | [ |
诺氟沙星 | NOR | 256.03 | 地表水(辽河) | 中国 | [ | |
洛美沙星 | LOM | 5.5 | 地表水(巢湖) | 中国 | [ | |
氧氟沙星 | OFL | 82.8 | 地表水(太湖) | 中国 | [ | |
四环素类 | 氧四环素 | OTC | 48.7 | 地表水(鄱阳湖) | 中国 | [ |
四环素 | TC | 87.9 | 地表水(太湖) | 中国 | [ | |
氯四环素 | CTC | 142.5 | 地表水(太湖) | 中国 | [ | |
大环内酯类 | 克拉霉素 | CLA | 1.5 | 海水 | 希腊 | [ |
105 | 地表水(扬子江) | 中国 | [ | |||
443 | 地表水 | 韩国 | [ | |||
泰乐菌素 | TYL | 1.88 | 地表水(白洋淀湖) | 中国 | [ | |
螺旋霉素 | SPI | 2.92 | 地表水(白洋淀湖) | 中国 | [ | |
红霉素 | ERM | 17.66 | 地下水 | 美国 | [ | |
林可酰胺类 | 林可霉素 | LIN | 64.5 | 地表水(巢湖) | 中国 | [ |
克林霉素 | CLD | 46.7 | 地表水(巢湖) | 中国 | [ | |
甲氧苄氨嘧啶 | 甲氧苄氨嘧啶 | TMP | 40.8 | 地表水(太湖) | 中国 | [ |
265 | 江河水 | 肯尼亚 | [ |
抗生素种类 | 名称 | 藻种 | 抗生素浓度 /mg?L-1 | 去除效率 /%(时间) | 去除机理 | 参考文献 |
---|---|---|---|---|---|---|
喹诺酮类 | 恩诺沙星 | 单藻Scenedesmus obliquus,ChlamydomonasMexicana,Chlorella vulgaris,Ourococcus Multisporus,Micractinium resseri及混藻 | 1 | 18~26(11d) | — | [ |
恩诺沙星 | 胶网藻(Dictyosphaerium sp.) | 5~100 | 14.2~23.3(12d) | — | [ | |
环丙沙星 | Chlamydomonas mexicana | 2 | 13(11d) | — | [ | |
大环内酯类 | 替米考星 | Chlorella PY-ZU1 | 0.01~50 | 90.2~99.8(9d) | — | [ |
磺胺类 | 磺胺甲嘧啶 | Scenedesmus obliquus | 0.025~0.25 | 31.4~62.3(12d) | 高浓度更容易降解 | [ |
磺胺甲唑 | Scenedesmus obliquus | 0.025~0.25 | 27.7~46.8(12d) | 高浓度更容易降解 | [ | |
磺胺甲唑 | Chlamydomonas sp. Tai-03 | 1~10 | 20(9d) | 生物降解?光解与水解 | [ | |
磺胺甲唑 | Nannochloris sp. | 0.01 | 32(14d) | — | [ | |
β-酰胺类 | 阿莫西林 | Chlorella sp. | 10~150 | >99(12h) | — | [ |
阿莫西林 | 铜绿微囊藻 | 50 | 60(24h) | 微藻的黑暗预处理有利于去除 | [ | |
头孢拉定 | 铜绿微囊藻 | 50 | 82.31(6h) | 微藻的黑暗预处理有利于去除 | [ | |
四环素 | 四环素 | 高速藻类塘 | 0.1 | >99(HRT 6d) | 生物表面吸附<6% | [ |
四环素 | Chlamydomonas sp. Tai-03 | 1~10 | 100(9d) | 水解>降解>光解 | [ | |
土霉素 | Phaeodactylum tricornutum | 2.5 | 97(11h) | 活藻最大吸附能力29.18mg/g | [ | |
甲氧氨苄嘧啶 | 甲氧氨苄嘧啶 | Nannochloris sp. | 10 | 0(14d) | — | [ |
表2 微藻处理抗生素的参数及去除效果
抗生素种类 | 名称 | 藻种 | 抗生素浓度 /mg?L-1 | 去除效率 /%(时间) | 去除机理 | 参考文献 |
---|---|---|---|---|---|---|
喹诺酮类 | 恩诺沙星 | 单藻Scenedesmus obliquus,ChlamydomonasMexicana,Chlorella vulgaris,Ourococcus Multisporus,Micractinium resseri及混藻 | 1 | 18~26(11d) | — | [ |
恩诺沙星 | 胶网藻(Dictyosphaerium sp.) | 5~100 | 14.2~23.3(12d) | — | [ | |
环丙沙星 | Chlamydomonas mexicana | 2 | 13(11d) | — | [ | |
大环内酯类 | 替米考星 | Chlorella PY-ZU1 | 0.01~50 | 90.2~99.8(9d) | — | [ |
磺胺类 | 磺胺甲嘧啶 | Scenedesmus obliquus | 0.025~0.25 | 31.4~62.3(12d) | 高浓度更容易降解 | [ |
磺胺甲唑 | Scenedesmus obliquus | 0.025~0.25 | 27.7~46.8(12d) | 高浓度更容易降解 | [ | |
磺胺甲唑 | Chlamydomonas sp. Tai-03 | 1~10 | 20(9d) | 生物降解?光解与水解 | [ | |
磺胺甲唑 | Nannochloris sp. | 0.01 | 32(14d) | — | [ | |
β-酰胺类 | 阿莫西林 | Chlorella sp. | 10~150 | >99(12h) | — | [ |
阿莫西林 | 铜绿微囊藻 | 50 | 60(24h) | 微藻的黑暗预处理有利于去除 | [ | |
头孢拉定 | 铜绿微囊藻 | 50 | 82.31(6h) | 微藻的黑暗预处理有利于去除 | [ | |
四环素 | 四环素 | 高速藻类塘 | 0.1 | >99(HRT 6d) | 生物表面吸附<6% | [ |
四环素 | Chlamydomonas sp. Tai-03 | 1~10 | 100(9d) | 水解>降解>光解 | [ | |
土霉素 | Phaeodactylum tricornutum | 2.5 | 97(11h) | 活藻最大吸附能力29.18mg/g | [ | |
甲氧氨苄嘧啶 | 甲氧氨苄嘧啶 | Nannochloris sp. | 10 | 0(14d) | — | [ |
废水来源 | 藻种 | 抗生素 | 抗生素浓度 /mg?L-1 | 抗生素去除效率 /% | 废水其他指标 /mg?L-1 | 废水其他指标去除率 /% | 参考 文献 |
---|---|---|---|---|---|---|---|
生活污水+抗生素(西班牙) | HRAP | 四环素 | 0.1 | >93 | COD 669 TOC 147 TN 70 TP 10 | 78 75 39 59 | [ |
卫生间污水(西班牙) | 未鉴定 | 酪洛芬 萘普生 布洛芬 对乙酰氨基酚 | 6.73×10-3 25.04×10-3 41.45×10-3 54.44×10-3 | 84.6 69.2 0 0 | COD 398 N-NH4+ 44 TP 7 | 45~85 85~200 70~90 | [ |
表3 微藻处理抗生素的参数及去除效果
废水来源 | 藻种 | 抗生素 | 抗生素浓度 /mg?L-1 | 抗生素去除效率 /% | 废水其他指标 /mg?L-1 | 废水其他指标去除率 /% | 参考 文献 |
---|---|---|---|---|---|---|---|
生活污水+抗生素(西班牙) | HRAP | 四环素 | 0.1 | >93 | COD 669 TOC 147 TN 70 TP 10 | 78 75 39 59 | [ |
卫生间污水(西班牙) | 未鉴定 | 酪洛芬 萘普生 布洛芬 对乙酰氨基酚 | 6.73×10-3 25.04×10-3 41.45×10-3 54.44×10-3 | 84.6 69.2 0 0 | COD 398 N-NH4+ 44 TP 7 | 45~85 85~200 70~90 | [ |
1 | XIONG J Q, KURADE M B, JEON B H. Can microalgae remove pharmaceutical contaminants from water?[J]. Trends Biotechnology, 2018, 1: 30-44. |
2 | ZHANG X, GUO W, HUU H N, et al. Performance evaluation of powdered activated carbon for removing 28 types of antibiotics from water[J]. Journal of Environmental Management, 2016, 172: 193-200. |
3 | FUOCO I, FIGOLI A, CRISCUOLI A, et al. Geochemical modeling of chromium release in natural waters and treatment by RO/NF membrane processes [J]. Chemosphere, 2020, 254: 126696. |
4 | CHENG J, YE Q, LI K, et al. Removing ethinylestradiol from wastewater by microalgae mutant Chlorella PY-ZU1 with CO2 fixation[J]. Bioresource Technology, 2018, 249: 284-289. |
5 | 潘禹, 王华生, 刘祖文, 等. 微藻废水生物处理技术研究进展[J]. 应用生态学报, 2019, 30(7): 2490-2500. |
PAN Yu, WANG Huasheng, LIU Zuwen, et al. Advances in biological wastewater treatment technology of microalgae[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2490-2500. | |
6 | 张风芝, 李红卫, 董深. 废水中抗生素去除方法的研究进展[J]. 中国环境管理干部学院学报, 2018, 28(6): 88-90. |
ZHANG Fengzhi, LI Hongwei, DONG Shen. Research progress on antibiotic removal methods in wastewater[J]. Journal of EMCC, 2018, 28(6): 88-90. | |
7 | 程宪伟, 梁银秀, 祝惠, 等. 人工湿地处理水体中抗生素的研究进展[J]. 湿地科学, 2017, 15(1): 125-131. |
CHENG Xianwei, LIANG Yinxiu, ZHU Hui, et al. Advances in treating antibiotics in water by constructed wetland[J]. Wetland Science, 2017, 15(1): 125-131. | |
8 | CHENG J, YE Q, YANG Z, et al. Microstructure and antioxidative capacity of the microalgae mutant Chlorella PY-ZU1 during tilmicosin removal from wastewater under 15% CO2[J]. Journal of Hazardous Materials, 2017, 324: 414-419. |
9 | LI H, ZHAO Q Y, HUANG H. Current states and challenges of salt-affected soil remediation by cyanobacteria[J]. Science of the Total Environment, 2019, 669: 258-272. |
10 | QUIJANO G, ARCILA J S, BUITRON G. Microalgal-bacterial aggregates: applications and perspectives for wastewater treatment[J]. Biotechnology Advances, 2017, 6: 772-781. |
11 | SINGH A, UMMALYMA S B. Bioremediation and biomass production of microalgae cultivation in river water contaminated with pharmaceutical effluent[J]. Bioresource Technology, 2020, 307: 123233. |
12 | CHEN H, JING L, TENG Y, et al. Characterization of antibiotics in a large-scale river system of China: occurrence pattern, spatiotemporal distribution and environmental risks[J]. Science of the Total Environment, 2018, 618: 409-418. |
13 | KÜMMERER K. Antibiotics in the aquatic environment-A review: Part Ⅰ[J]. Chemosphere, 2009, 75: 417-434. |
14 | BOECKEL T P VAN, GANDRA S, ASHOK A, et al. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data[J]. Lancet Infectious Diseases, 2014, 8: 742-750. |
15 | LIU X, LU S, GUO W, et al. Antibiotics in the aquatic environments: a review of lakes, China[J]. Science of the Total Environment, 2018, 627: 1195-1208. |
16 | HUERTA-FONTELA M, GALCERAN M T, VENTURA F. Occurrence and removal of pharmaceuticals and hormones through drinking water treatment[J]. Water Research, 2011, 45: 1432-1442. |
17 | ALYGIZAKI N A, GAGO-FERRERO P, BOROVA V L, et al. Occurrence and spatial distribution of 158 pharmaceuticals, drugs of abuse and related metabolites in offshore seawater[J]. Science of the Total Environment, 2016, 541: 1097-1105. |
18 | BAMES K K, KOLPINl D W, FURLONG E T, et al. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States -Ⅰ) groundwater[J]. Science of the Total Environment, 2008, 402: 192-200. |
19 | KIMOSOP S J, GETENGA Z M, ORATA F, et al. Residue levels and discharge loads of antibiotics in wastewater treatment plants (WWTPs), hospital lagoons, and rivers within Lake Victoria Basin, Kenya[J]. Environmental Monitoring and Assess, 2016, 188(9): 532. |
20 | CHEN K, ZHOU J L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China[J]. Chemosphere, 2014, 95: 604-612. |
21 | LI W, SHI Y, GAO L, et al. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China[J]. Chemosphere, 2012, 11: 1307-1315. |
22 | NGUYEN D J C, SEBESVARI Z, RENAUD F, et al. Occurrence and dissipation of the antibiotics sulfamethoxazole, sulfadiazine, trimethoprim, and enrofloxacin in the Mekong Delta, Vietnam[J]. PLOS One, 2015, 10(7): e0131855. |
23 | XU J, ZHANG Y, ZHOU C, et al. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China[J]. Science of the Total Environment, 2014, 497-498: 267-273. |
24 | GARY A D, TODD D, HERSHEY A E. The seasonal distribution and concentration of antibiotics in rural streams and drinking wells in the piedmont of North Carolina[J]. Science of the Total Environment, 2020, 710: 136286. |
25 | NGUMBAA E, GACHANJAB A, TUHKANEN T. Occurrence of selected antibiotics and antiretroviral drugs in Nairobi River Basin, Kenya[J]. Science of the Total Environment, 2016, 539: 206-213. |
26 | BAI Y W, MENG W, XU J, et al. Occurrence, distribution and bioaccumulation of antibiotics in the Liao River Basin in China[J]. Environmental Science Processes & Impacts, 2014, 16: 586. |
27 | TANG J, SHI T Z, WU X W, et al. The occurrence and distribution of antibiotics in Lake Chaohu, China: seasonal variation, potential source and risk assessment[J]. Chemosphere, 2015, 122: 154-161. |
28 | DING H J, WU Y X, ZHANG W H, et al. Occurrence, distribution, and risk assessment of antibiotics in the surface water of Poyang Lake, the largest freshwater lake in China[J]. Chemosphere, 2017, 184:137-147. |
29 | WU C X, HUANG X L, WITTER J D, et al Occurrence of pharmaceuticals and personal care products and associated environmental risks in the central and lower Yangtze river, China[J]. Ecotoxicology and Environmental Safety, 2014, 106: 19-26. |
30 | KIM J W, JANG H S, KIM J G. The occurrences of pharmaceutical and personal care products (PPCPs) in Mankyung river, South Korea[J]. Journal of Health Science, 2009, 55(2): 249-258. |
31 | 王建龙. 废水中药品及个人护理用品 PPCPs的去除技术研究进展[J]. 四川师范大学学报(自然科学版), 2020, 43(2): 143-172. |
WANG Jianlong. Removal of pharmaceuticals and personal care products (PPCPs) from eastewater: a review[J]. Journal of Sichuan Normal University (Natural Science), 2020, 43(2): 143-172. | |
32 | DÍAZ-GARDUŇO B, PINTADO-HERRERA M G, BIEL-MAESO M, et al. Environmental risk assessment of effluents as a whole emerging contaminant: efficiency of alternative tertiary treatments for wastewater depuration[J]. Water Research, 2017, 119: 136-149. |
33 | RIZZO L, MANAIA C, MERLIN C, et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review[J]. Science of the Total Environment, 2013, 447: 345-360. |
34 | CAHILL N, O'CONNNOR L, MAHON B, et al. Hospital effluent: a reservoir for carbapenemase-producing enterobacterales?[J]. Science of the Total Environment, 2019, 672: 618-624. |
35 | World Health Organization. Global action plan on antimicrobial resistance[R]. Geneva: WHO, 2015. |
36 | 吴玄, 王兴旺, 刘艳华, 等. 铜绿微囊藻的光自养特性及其对典型抗生素去除效果的研究[J]. 广东化工, 2018, 45(2): 10-13. |
WU Xuan, WANG Xingwang, LIU Yanghua, et al. Study on the photosynthetic characteristics of Microcystis Aeruginosa and the algal removal rate of two targets antibiotics[J]. Guangdong Chemical Industry, 2018, 45(2): 10-13. | |
37 | JI X Y, LI H M, ZHANG J B, et al. The collaborative effect of Chlorella vulgaris-Bacilluslicheniformis consortia on the treatment of municipal water[J]. Journal of Hazardous Materials, 2019, 365: 483-493. |
38 | WANG Y, HO S H, CHENG C L, et al. Perspectives on the feasibility of using microalgae for industrial wastewater treatment[J]. Bioresource Technology, 2016, 222: 485-497. |
39 | LYU J P, LIU Y, FENG J, et al. Nutrients removal from undiluted cattle farm wastewater by the two-stage process of microalgae-based wastewater treatment[J]. Bioresource Technology, 2018, 264: 311-318. |
40 | SHI X Q, YEAP T S, HUANG S, et al. Pretreatment of saline antibiotic wastewater using marine microalga[J]. Bioresource Technology, 2018, 258: 240-246. |
41 | 于颖, 周洋洋, 孙显涛, 等. 新型微藻组合工艺去除典型抗生素的方法研究[J]. 环境科学与技术, 2018, 48(2): 139-143. |
YU Yin, ZHOU Yangyang, SUN Xiantao, et a1. Study on the novel combined algal removal technology on typical antibiotics[J]. Environmental Science & Technology, 2018, 41(2): 139-l43. | |
42 | GONZĂDLEZ-PLEITER M, GONZALO S, RODEA-PALOMARES I, et al. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment[J]. Water Research, 2013, 27: 2050-2064. |
43 | LÓPEZ-SERNA R, GARCÍA D, BOLADO S, et al. Photobioreactors based on microalgae-bacteria and purple phototrophic bacteria consortia: a promising technology to reduce the load of veterinary drugs from piggery wastewater[J]. Science of the Total Environment, 2019, 692: 259-266. |
44 | LIU Y H, WANG Z Z, YAN K, et al. A new disposal method for systematically processing of ceftazidime: the intimate coupling UV/algae-algae treatment[J]. Chemical Engineering Journal, 2012, 314: 152-159. |
45 | LI H T, PAN Y, WANG Z Z, et al. An algal process treatment combined with the Fenton reaction for high concentrations of amoxicillin and cefradine[J]. RSC Advances, 2015, 5: 100775-100782. |
46 | GUO R, CHEN J. Application of alga-activated sludge combined system (AASCS) as a novel treatment to remove cephalosporins [J]. Chemical Engineering Journal, 2015, 260, 550-556. |
47 | SAAVEDRA R, MUNOZ R, TABOADA M E, et al. Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae[J]. Bioresource Technology, 2018, 263: 49-57. |
48 | SUTHERLAND D L, RALPH P J. Microalgal bioremediation of emerging contaminants-opportunities and challenges[J]. Water Research, 2019, 164: 114921. |
49 | SANTAEUFEMIA S, TORRES E, MERA R, et al. Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum[J]. Journal of Hazardous Materials, 2016, 320: 315-325. |
50 | KIKI C, RASHID A, WANG Y W, et al. Dissipation of antibiotics by microalgae: kinetics, identification of transformation products and pathways [J]. Journal of Hazardous Materials, 2020, 387: 121985. |
51 | DANESHVAR E, ZARRINMEHR M J, HASHTJIN A M, et al. Versatile applications of freshwater and marine water microalgae in dairy wastewater treatment, lipid extraction and tetracycline biosorption[J]. Bioresource Technology, 2018, 268: 523-530. |
52 | XIE P, HO S H, PENG J, et al. Dual purpose microalgae-based biorefinery for treating pharmaceuticals and personal care products (PPCPs) residues and biodiesel production[J]. Science of the Total Environment, 2019, 688: 253-261. |
53 | 皮永蕊, 吕永红, 柳莹, 等. 微藻-细菌共生体系在废水处理中的应用[J]. 微生物学报, 2019, 59(6): 1188-1196. |
PI Yongrui, Yonghong LYU, LIU Ying, et al. Application of microalgae-bacteria symbiosis system in wastewater treatment[J]. Acta Microbiologica Sinica, 2019, 59(6): 1188-1196. | |
54 | XIAO R, ZHENG Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications[J]. Biotechnology Advances, 2016, 34: 1225-1244. |
55 | LENG L, WEI L, XIONG Q, et al. Use of microalgae based technology for the removal of antibiotics from wastewater: a review[J]. Chemosphere, 2020, 238: 124680. |
56 | NORVILL Z N, TOLEDO-CERVANTES A, BLANCO S, et al. Photodegradation and sorption govern tetracycline removal during wastewater treatment in algal ponds[J]. Bioresource Technology, 2017, 232: 35-43. |
57 | BAI X L, ACHARYA K. Removal of seven endocrine disrupting chemicals (EDCs) from municipal wastewater effluents by a freshwater green alga[J]. Environmental Pollution, 2019, 247: 534-540. |
58 | HOM-DIAZ A, NORVILL Z N, BLANQUEZ P, et al. Ciprofloxacin removal during secondary domestic wastewater treatment in high rate algal ponds[J]. Chemosphere, 2017, 180: 33-41. |
59 | GUO W Q, ZHENG H S, LI S, et al. Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae[J]. Bioresource Technology, 2016, 221: 284-290. |
60 | XIONG J Q, KURADE M B, KIM J R, et al. Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana[J]. Journal of Hazardous Materials, 2017, 323: 212-219. |
61 | YU Y, ZHOU Y, WANG Z, et al. Investigation of the removal mechanism of antibiotic ceftazidime by green algae and subsequent microbic impact assessment[J]. Scientific Reports, 2017, 7: 4168. |
62 | LIU X H, GUO X C, LIU Y, et al. A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: performance and microbial response[J]. Environmental Pollution, 2019, 254: 112996. |
63 | 陈辉, 刘珊, 郝勤伟, 等. 眼点拟微球藻和近头状伪蹄型藻对抗生素的生理响应及去除效应[J]. 海洋环境科学, 2020, 39(1): 31-38. |
CHEN Hui, LIU Shan, HAO Qinwei, et al. Physiology responses of Nannochloropsis oculata and Pseudokirchneriella subcapitata to antibiotic pollution and their removal effects[J]. Marine Environmental Science, 2020, 39(1): 31-38. | |
64 | SONG C F, WEI Y L, QIU Y T, et al. Biodegradability and mechanism of florfenicol via Chlorella sp. UTEX1602 and L38: experimental study[J]. Bioresource Technology, 2019, 272: 529-534. |
65 | XIONG J Q, KURADE M B, JEON B H. Ecotoxicological effects of enrofloxacin and its removal by monoculture of microalgal species and their consortium[J]. Environmental Pollution, 2017, 226: 486-493. |
66 | 王振方, 韩子玉, 王梦雪, 等. 胶网藻对水体中恩诺沙星的毒性响应及去除作用[J]. 环境科学, 2020, 41(6): 2688-2697. |
WANG Zhenfang, HAN Ziyu, WANG Mengxue, et al. Toxicological effects of enrofloxacin on and its removal by the freshwater micro-green algae Dictyosphaerium sp.[J]. Environmental Science, 2020, 41(6): 2688-2697. | |
67 | XIONG J Q, GOVINDWAR S, KURADE M B, et al. Toxicity of sulfamethazine and sulfamethoxazole and their removal by a green microalga, Scenedesmus obliquus[J]. Chemosphere, 2019, 218: 551-558. |
68 | BAI X L, ACHARYA K. Removal of trimethoprim, sulfamethoxazole, and triclosan by the green alga Nannochloris sp.[J]. Journal of Hazardous Materials, 2016, 315: 70-75. |
69 | VALITALO P, KRUGLOVA A, MIKOLA A, et al. Toxicological impacts of antibiotics on aquatic micro-organisms: a mini-review [J]. International Journal of Hygiene and Environmental Health, 2017, 220: 558-569. |
70 | PENG Y Y, GAO F, YANG H L, et al. Simultaneous removal of nutrient and sulfonamides from marine aquaculture wastewater by concentrated and attached cultivation of Chlorella vulgaris in an algal biofilm membrane photobioreactor (BF-MPBR) [J]. Science of the Total Environment, 2020, 725: 138524. |
71 | 张方, 熊绍专,何加龙, 等. 用于生物柴油生产的微藻培养技术研究进展[J]. 化学与生物工程, 2018, 35(1): 5-11. |
ZHANG Fang, XIONG Shaozhuan, HE Jialong, et al. Research progress in cultivation technology of microalgae for biodiesel production[J]. Chemistry & Bioengineering, 2018, 35(1): 5-11. | |
72 | 涂仁杰, 金文标, 韩松芳, 等. 基于城市污水资源化的跑道池培养小球藻条件优化[J]. 化工进展, 2018, 37(3): 1181-1186. |
TU Renjie, JIN Wenbiao, HAN Songfang, et al. Optimization of culture condition for biodiesel production by Chlorellapyrenoidosa grown in municipal wastewater in open raceway ponds[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1181-1186. | |
73 | HOM-DIAZ A, JAEN-GIL A, BELLO-LASEMA I, et al. Performance of a microalgal photobioreactor treating toilet wastewater: pharmaceutically active compound removal and biomass harvesting[J]. Science of the Total Environment, 2017, 592: 1-11. |
[1] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[2] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[3] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[4] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[5] | 祝佳欣, 朱雯喆, 徐俊, 谢靖, 王文标, 谢丽. 基于导电材料强化抗生素胁迫厌氧消化的研究进展[J]. 化工进展, 2023, 42(2): 1008-1019. |
[6] | 郭宇晨, 刘庆林, 蒋金洋, 宗永忠, 王金伟, 李臻, 吕树祥. 含铬污泥资源化方法研究进展[J]. 化工进展, 2023, 42(2): 575-584. |
[7] | 应璐瑶, 王荣昌. 菌藻共生系统削减抗生素类污染物的去除途径及胁迫响应[J]. 化工进展, 2023, 42(1): 469-479. |
[8] | 秦振芳, 廖日红, 马伟芳. 吸收-微藻法固定燃气电厂低浓度CO2同步产油技术研究进展[J]. 化工进展, 2023, 42(1): 94-106. |
[9] | 季炫宇, 林伟坚, 周雄, 柏继松, 杨宇, 孔杰, 廖重阳. 废轮胎热裂解技术研究现状与进展[J]. 化工进展, 2022, 41(8): 4498-4512. |
[10] | 朱婷婷, 苏仲弦, 赵天杭, 刘轶文. 零价铁及其耦合技术强化抗生素废水的处理[J]. 化工进展, 2022, 41(8): 4513-4529. |
[11] | 谢力, 李秀芬. 胞外多糖含量对碱热水解法溶出污泥蛋白质及水解液固液分离性能的影响[J]. 化工进展, 2022, 41(8): 4580-4586. |
[12] | 黄平安, 徐俊, 杨宇轩, 潘宇涵, 王新文, 黄群星. 球磨改性热解炭吸附磺胺甲唑[J]. 化工进展, 2022, 41(7): 3784-3793. |
[13] | 蔡思超, 周静, 杜金泽, 李方舟, 李源森, 何林, 李鑫钢, 王成扬. 煤化工酚基精馏釜残资源化利用过程初步分析[J]. 化工进展, 2022, 41(6): 3360-3371. |
[14] | 杨雅斌, 张迎霜, 杜海玲, 黄伟, 王晖. 环境对改性塑料表面亲/疏水转变的作用机制[J]. 化工进展, 2022, 41(4): 2140-2149. |
[15] | 王思怡, 李月慧, 葛玉洁, 王焕然, 赵璐璐, 李先春. NTP-DBD气化城市污泥及其模型化合物: 气氛对产物分布及特性的影响[J]. 化工进展, 2022, 41(4): 2150-2160. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |