化工进展 ›› 2021, Vol. 40 ›› Issue (8): 4573-4586.DOI: 10.16085/j.issn.1000-6613.2020-2031
曾茂株1(), 佘煜琪1(), 胡玉彬1, 吴林军1, 袁慢景1, 漆毅1, 王欢2, 林绪亮1, 秦延林1()
收稿日期:
2020-10-09
出版日期:
2021-08-05
发布日期:
2021-08-12
通讯作者:
秦延林
作者简介:
曾茂株(1997—),男,硕士研究生,研究方向为木质素高值化利用。E-mail:基金资助:
ZENG Maozhu1(), SHE Yuqi1(), HU Yubin1, WU Linjun1, YUAN Manjing1, QI Yi1, WANG Huan2, LIN Xuliang1, QIN Yanlin1()
Received:
2020-10-09
Online:
2021-08-05
Published:
2021-08-12
Contact:
QIN Yanlin
摘要:
木质素是一种具有三维网状分子结构、含有大量芳香基团和高含碳量等特点的天然高分子,其在制备多孔炭领域具有巨大潜力。多孔炭在催化剂和能源储存领域具有极大的应用前景。以来源于制浆造纸和生物炼制行业的副产物工业木质素作为原料制备多孔炭应用于能源储存、吸附、催化剂载体等领域,可实现工业木质素在碳基功能材料领域的高附加值循环再利用。本文详细综述了目前木质素多孔炭的常用制备方法和微结构特性的调控方法,总结归纳了各制备方法的主要特点以及影响木质素多孔炭微结构与性能的关键因素;重点综述了近些年对木质素多孔炭孔道结构调控方面的研究,归纳了孔调控的方法;此外,总结了木质素多孔炭在超级电容器、锂离子电池、吸附剂和催化剂载体领域中的应用研究现状,讨论了催化和储能材料对木质素多孔炭的微结构特性要求。总结并展望了木质素多孔炭在制备与应用中面临的机遇和挑战。
中图分类号:
曾茂株, 佘煜琪, 胡玉彬, 吴林军, 袁慢景, 漆毅, 王欢, 林绪亮, 秦延林. 木质素多孔炭的制备及应用研究进展[J]. 化工进展, 2021, 40(8): 4573-4586.
ZENG Maozhu, SHE Yuqi, HU Yubin, WU Linjun, YUAN Manjing, QI Yi, WANG Huan, LIN Xuliang, QIN Yanlin. Progress in preparation and application of lignin porous carbon[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4573-4586.
木质素种类 | 多孔炭制备方法 | 应用方向 | 相关文献 |
---|---|---|---|
有机溶剂木质素 | CO2活化 | 高性能吸附剂 | [ |
木质素磺酸盐 | 金属盐活化 | 吸附甲苯 | [ |
稻壳 | ZnCl2活化 | 电极材料 | [ |
酶解木质素 | 钾盐活化 | 电极材料 | [ |
冷杉(软木木质素) | — | 维生素吸附 | [ |
水解木质素 | 热裂解法 | 吸附剂 | [ |
生物-乙醇木质素 | 水热炭化法 | 超级电容器 | [ |
山毛榉(硬木木质素) | — | 电催化剂 | [ |
表1 不同木质素制备多孔炭研究进展
木质素种类 | 多孔炭制备方法 | 应用方向 | 相关文献 |
---|---|---|---|
有机溶剂木质素 | CO2活化 | 高性能吸附剂 | [ |
木质素磺酸盐 | 金属盐活化 | 吸附甲苯 | [ |
稻壳 | ZnCl2活化 | 电极材料 | [ |
酶解木质素 | 钾盐活化 | 电极材料 | [ |
冷杉(软木木质素) | — | 维生素吸附 | [ |
水解木质素 | 热裂解法 | 吸附剂 | [ |
生物-乙醇木质素 | 水热炭化法 | 超级电容器 | [ |
山毛榉(硬木木质素) | — | 电催化剂 | [ |
1 | 王欢, 杨东杰, 钱勇, 等. 木质素基功能材料的制备与应用研究进展[J]. 化工进展, 2019, 38(1): 434-448. |
WANG H, YANG D J, QIAN Y, et al. Progress in the preparation and application of lignin-based functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 434-448. | |
2 | 袁康帅, 郭大亮, 张子明, 等. 碱木质素基多孔炭材料的制备及其在超级电容器中的应用[J]. 中国造纸, 2019, 38(6): 47-53. |
YUAN K S, GUO D L, ZHANG Z M, et al. Preparation of alkali-lignin-based polyporous carbon materials and its application in supercapacitors[J]. China Pulp and Paper, 2019, 38(6): 47-53. | |
3 | RAGAN S, MEGONNELL N. Activated carbon from renewable resources-lignin[J]. Cellulose Chemistry and Technology, 2011, 45 (7/8): 527-531. |
4 | LIU W J, JIANG H, YU H Q. Thermochemical conversion of lignin to functional materials: a review and future directions[J]. Green Chemistry, 2015, 17(11): 4888-4907. |
5 | SAHA D, LI Y C, BI Z H, et al. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon[J]. Langmuir, 2014, 30(3): 900-910. |
6 | LAM E., LUONG J H T. Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals[J]. ACS Catalysis, 2014, 4(10): 3393-3410. |
7 | JEON J W, ZHANG L B, LUTKENHAUS J L, et al. Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications[J]. ChemSusChem, 2015, 8(3): 428-432. |
8 | LIU H C, CHIEN A T, NEWCOMB B A, et al. Processing, structure, and properties of lignin and CNT incorporated polyacrylonitrile-based carbon fibers[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 1943-1954. |
9 | LI Q, SEREM W K, DAI W, et al. Molecular weight and uniformity define the mechanical performance of lignin-based carbon fiber[J]. Journal of Materials Chemistry A, 2017, 5(25): 12740-12746. |
10 | WANG S C, ZHOU Z, XIANG H X, et al. Reinforcement of lignin-based carbon fibers with functionalized carbon nanotubes[J]. Composites Science and Technology, 2016, 128: 116-122. |
11 | SUHAS, CARROTT P J M, MMLR CARROTT. Lignin-from natural adsorbent to activated carbon: a review[J]. Bioresource Technology, 2007, 98(12): 2301-2312. |
12 | MENG Y, LU J, CHENG Y, et al. Lignin-based hydrogels: a review of preparation, properties, and application[J]. International Journal of Biological Macromolecules, 2019, 135: 1006-1019. |
13 | SHI Z J, MA M G. Synthesis, structure, and applications of lignin-based carbon materials: a review[J]. Science of Advanced Materials, 2019, 11(1): 18-32. |
14 | 张晨光, 王亚辉, 吴小亮. 生物质基多孔碳在超级电容器中的应用进展[J]. 现代化工, 2020, 40(4): 27-29, 35. |
ZHANG C G, WANG Y H, WU X L. Progress in the application of biomass based multi-pore carbon in supercapacitors[J]. Modern Chemical Industry, 2020, 40(4): 27-29, 35. | |
15 | 赵东江, 马松艳, 田喜强.生物质介孔炭的制备及其在电催化氧还原中的应用[J]. 炭素技术, 2019, 38(6): 6-11. |
ZHAO D J, MA S Y, TIAN X Q. Preparation of biomass mesoporous carbon and its application in electrocatalytic oxygen reduction[J]. Carbon Techniques, 2019, 38(6): 6-11. | |
16 | MAHMOOD F, ZHANG C, XIE Y C, et al. Transforming lignin into porous graphene via direct laser writing for solid-state supercapacitors[J]. RSC Advances, 2019, 9(39): 22713-22720. |
17 | CHO D W, YOON K, AHN Y, et al. Fabrication and environmental applications of multifunctional mixed metal-biochar composites (MMBC) from red mud and lignin wastes[J]. Journal of Hazardous Materials, 2019, 374: 412-419. |
18 | KIJIMA M, HIRUKAWA T, HANAWA F, et al. Thermal conversion of alkaline lignin and its structured derivatives to porous carbonized materials[J]. Bioresource Technology, 2011, 102(10): 6279-6285. |
19 | DU Q S, LI D P, LONG S Y, et al. Graphene like porous carbon with wood-ear architecture prepared from specially pretreated lignin precursor[J]. Diamond and Related Materials, 2018, 90: 109-115. |
20 | WANG X, LIU Y C, CHEN M Z, et al. Direct microwave conversion from lignin to micro/meso/macroporous carbon for high-performance symmetric supercapacitors[J]. ChemElectroChem, 2019, 6(18): 4789-4800. |
21 | ZHANG N Y, SHEN Y F. One-step pyrolysis of lignin and polyvinyl chloride for synthesis of porous carbon and its application for toluene sorption[J]. Bioresource Technology, 2019, 284: 325-332. |
22 | NUNES RENAN S, TUDINO TATIANE C, VIEIRA LIGIA M, et al. Rational production of highly acidic sulfonated carbons from kraft lignins employing a fractionation process combined with acid-assisted hydrothermal carbonization[J]. Bioresource Technology, 2020, 303: 122882. |
23 | CHEN W X, HU C F, YANG Y H, et al. Rapid synthesis of carbon dots by hydrothermal treatment of lignin[J]. Materials (Basel, Switzerland), 2016, 9(3):184. |
24 | SANGCHOOM W, MOKAYA R. Valorization of lignin waste: carbons from hydrothermal carbonization of renewable lignin as superior sorbents for CO2 and hydrogen storage[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(7): 1658-1667. |
25 | WU Y, CAO J P, ZHAO X Y, et al. High-performance electrode material for electric double-layer capacitor based on hydrothermal pre-treatment of lignin by ZnCl2[J]. Applied Surface Science, 2020, 508: 144536. |
26 | ZHANG W, YU C Y, CHANG L B, et al. Three-dimensional nitrogen-doped hierarchical porous carbon derived from cross-linked lignin derivatives for high performance supercapacitors[J]. Electrochimica Acta, 2018, 282: 642-652. |
27 | GUO N N, LI M, SUN X K, et al. Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities[J]. Green Chemistry, 2017, 19(11): 2595-2602. |
28 | NIKOLAI PONOMAREV, SILLANPAA M. Combined chemical-templated activation of hydrolytic lignin for producing porous carbon[J]. Industrial Crops and Products, 2019, 135: 30-38. |
29 | WANG Nan, Fan HAI, AI Shiyun. Lignin templated synthesis of porous carbon-CeO2 composites and their application for the photocatalytic desulphuration[J]. Chemical Engineering Journal, 2015, 260: 785-790. |
30 | VALERO-ROMERO M J, MARQUEZ-FRANCO E M, BEDIA J, et al. Hierarchical porous carbons by liquid phase impregnation of zeolite templates with lignin solution[J]. Microporous and Mesoporous Materials, 2014, 196: 68-78. |
31 | CHEN L, DENG J Q, SONG Y D, et al. Deep eutectic solvent promoted tunable synthesis of nitrogen-doped nanoporous carbons from enzymatic hydrolysis lignin for supercapacitors[J]. Materials Research Bulletin, 2020, 123: 110708. |
32 | GE W N, ZHOU Z P, ZHANG P, et al. Graphene oxide template-confined fabrication of hierarchical porous carbons derived from lignin for ultrahigh-efficiency and fast removal of ciprofloxacin[J]. Journal of Industrial and Engineering Chemistry, 2018, 66: 456-467. |
33 | ZHAO W H, LIN X Y, CAI H M, et al. Preparation of mesoporous carbon from sodium lignosulfonate by hydrothermal and template method and its adsorption of uranium(Ⅵ)[J]. Industrial & Engineering Chemistry Research, 2017, 56(44): 12745-12754. |
34 | LIU S, WEI W G, WU S B, et al. Preparation of hierarchical porous activated carbons from different industrial lignin for highly efficient adsorption performance[J]. Journal of Porous Materials, 2020, 27: 1523-1533. |
35 | ROWLANDSON J L, EDLER K J, TIAN M, et al. Toward process-resilient lignin-derived activated carbons for hydrogen storage applications[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(5): 2186-2195. |
36 | LI B W, XIONG H, XIAO Y, et al. Efficient toluene adsorption on metal salt-activated porous carbons derived from low-cost biomass: a discussion of mechanism[J]. ACS Omega, 2020, 5(22): 13196-13206. |
37 | LI Y, HUANG Y, SONG K X, et al. Rice husk lignin-derived porous carbon anode material for lithium-ion batteries[J]. ChemistrySelect, 2019, 4(14): 4178-4184. |
38 | XI Y B, YANG D J, QIU X Q, et al. Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation[J]. Industrial Crops and Products, 2018, 124: 747-754. |
39 | VEPRIKOVA E V, IVANOV I P, CHESNOKOV N V, et al. Effect of a porous structure of the carbon sorbents from abies wood lignin on sorption of the organic substances of different nature[J]. Journal of Siberian Federal University: Chemistry, 2018, 11(4): 488-499. |
40 | RAICHEVA L, RADEVA G, NENKOVA S, et al. Adsorption characteristics of activated carbon obtained from residual hydrolyzed lignin[J]. Bulgarian Chemical Communications, 2017, 49(1): 139-144. |
41 | ZHANG L M, YOU T T, ZHOU T, et al. Interconnected hierarchical porous carbon from lignin-derived byproducts of bioethanol production for ultra-high performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(22): 13918-13925. |
42 | GRAGLIA M, PAMPEL J, HANTKE T, et al. Nitro lignin-derived nitrogen-doped carbon as an efficient and sustainable electrocatalyst for oxygen reduction[J]. ACS Nano, 2016, 10(4): 4364-4371. |
43 | CHEN W M, LUO M, YANG K, et al. Microwave-assisted KOH activation from lignin into hierarchically porous carbon with super high specific surface area by utilizing the dual roles of inorganic salts: microwave absorber and porogen[J]. Microporous and Mesoporous Materials, 2020, 300: 110178. |
44 | ZHANG B P, YANG D J, QIU X Q, et al. Influences of aggregation behavior of lignin on the microstructure and adsorptive properties of lignin-derived porous carbons by potassium compound activation[J]. Journal of Industrial and Engineering Chemistry, 2020, 82: 220-227. |
45 | WANG D W, NAI J W, XU L, et al. A Potassium formate activation strategy for the synthesis of ultrathin graphene-like porous carbon nanosheets for advanced supercapacitor applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 18901-18911. |
46 | XI Y B, YANG D J, WANG Y Y, et al. Effect of structure of technical lignin on the electrochemical performance of lignin-derived porous carbon from K2CO3 activation[J]. Holzforschung, 2020, 74(3): 293-302. |
47 | XIONG X Q, ZHANG H, LAI S L, et al. Lignin modified by deep eutectic solvents as green, reusable, and bio-based catalysts for efficient chemical fixation of CO2[J]. Reactive & Functional Polymers, 2020, 149: 104502. |
48 | CHENG F Y, LIANG J, ZHAO J Z, et al. Biomass waste-derived microporous carbons with controlled texture and enhanced hydrogen uptake[J]. Chemistry of Materials, 2008, 20(5): 1889-1895. |
49 | GONZALEZ-SERRANO E, CORDERO T, RODRIGUEZ-MIRASOL J, et al. Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors[J]. Water Research, 2004, 38(13): 3043-3050. |
50 | SAHA D, WARREN KAITLYN E, NASKAR AMIT K. Soft-templated mesoporous carbons as potential materials for oral drug delivery[J]. Carbon, 2014, 71: 47-57. |
51 | WANG S, SIMA G B, CUI Y, et al. Preparations of lignin-derived ordered mesoporous carbon by self-assembly in organic solvent and aqueous solution: comparison in textural property[J]. Materials Letters, 2020, 264: 127318. |
52 | QIN H F, JIAN R H, BAI J R, et al. Influence of molecular weight on structure and catalytic characteristics of ordered mesoporous carbon derived from lignin[J]. ACS Omega, 2018, 3(1): 1350-1356. |
53 | PALAZZOLO M A, DOURGES M A, MAGUERESSE A, et al. Preparation of lignosulfonate-based carbon foams by pyrolysis and their use in the microencapsulation of a phase change material[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2453-2461. |
54 | GRAGLIA M, PAMPEL J, HANTKE T, et al. Nitro lignin-derived nitrogen-doped carbon as an efficient and sustainable electrocatalyst for oxygen reduction[J]. ACS Nano, 2016, 10(4): 4364-4371. |
55 | SEO J Y, PARK H Y, SHIN K W, et al. Lignin-derived macroporous carbon foams prepared by using poly(methyl methacrylate) particles as the template[J]. Carbon, 2014, 76: 357-367. |
56 | LEE D W, JIN M H, PARK J H, et al. Flexible synthetic strategies for lignin-derived hierarchically porous carbon materials[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10454-10462. |
57 | CHANG Z S, DAI J D, XIE A, et al. From lignin to three-dimensional interconnected hierarchically porous carbon with high surface area for fast and superhigh-efficiency adsorption of sulfamethazine[J]. Industrial & Engineering Chemistry Research, 2017, 56(33): 9367-9375. |
58 | LI H, ZHAO Y H, LIU S Q, et al. Hierarchical porous carbon monolith derived from lignin for high areal capacitance supercapacitors[J]. Microporous and Mesoporous Materials, 2020, 297: 109960. |
59 | PUZIY A M, PODDUBNAYA O I, SEVASTYANOVA O. Carbon materials from technical lignins: recent advances[J]. Topics in Current Chemistry, 2018, 376(4): 11. |
60 | CHISTYAKOV A V, TSODIKOV M V. Methods for preparing carbon sorbents from lignin (review)[J]. Russian Journal of Applied Chemistry, 2018, 91(7): 1090-1105. |
61 | CHATTERJEE S, SAITO T. Lignin-derived advanced carbon materials[J]. Chemsuschem, 2015, 8(23): 3941-3958. |
62 | XI Y B, HUANG S, YANG D J, et al. Hierarchical porous carbon derived from the gasexfoliation activation of lignin for high-energy lithium-ion batteries[J]. Green Chem., 2020, 22: 4321-4330. |
63 | TAO L, XU Z R, KUAI C G, et al. Flexible lignin carbon membranes with surface ozonolysis to host lean lithium metal anodes for nickel-rich layered oxide batteries[J]. Energy Storage Materials, 2020, 24: 129-137 |
64 | DEMIR M, TESSEMA T D, FARGHALY A A, et al. Lignin-derived heteroatom-doped porous carbons for supercapacitor and CO2 capture applications[J]. International Journal of Energy Research, 2018, 42(8): 2686-2700. |
65 | XU J, ZHOU X Y, CHEN M Z. Microwave-assisted synthesis of Cu-doped hierarchical porous carbon aerogels derived from lignin for high-performance supercapacitors[J]. Materials Research Express, 2018, 5(9): 11. |
66 | YIN W M, TIAN L F, PANG B, et al. Fabrication of dually N/S-doped carbon from biomass lignin: porous architecture and high-rate performance as supercapacitor[J]. International Journal of Biological Macromolecules, 2020, 156: 988-996. |
67 | PARK S, CHOI M S, PARK H S. Nitrogen-doped nanoporous carbons derived from lignin for high CO2 capacity[J]. Carbon Letters, 2019, 29(3): 289-296. |
68 | ZHU B L, HUANG J Z, LU J R, et al. Worm-like hierarchical porous carbon derived from bio-renewable lignin with high CO2 capture capacity[J]. International Journal of Electrochemical Science, 2017, 12(12): 11102-11107. |
69 | WANG A Q, ZHENG Z K, LI R Q, et al. Biomass-derived porous carbon highly efficient for removal of Pb(Ⅱ) and Cd(Ⅱ)[J]. Green Energy & Environment, 2019, 4(4): 414-423. |
70 | LYU D, LI Y, WANG L J. Carbon aerogels derived from sodium lignin sulfonate embedded in carrageenan skeleton for methylene-blue removal[J]. International Journal of Biological Macromolecules, 2020, 148: 979-987. |
71 | LI J M, LI X Y, HAN G C, et al. Salt-template hydrothermal carbonization for Pd NP-loaded porous carbonaceous material[J]. Bioresources, 2019, 14(2): 3630-3650. |
72 | RUSANEN A, RIIKKA K, KATJA L, et al. Conversion of xylose to furfural over lignin-based activated carbon-supported iron catalysts[J]. Catalysts, 2020, 10(8): 820. |
73 | ZHANG B P, YANG D J, QIAN Y, et al. Engineering a lignin-based hollow carbon with opening structure for highly improving the photocatalytic activity and recyclability of ZnO[J]. Industrial Crops and Products, 2020, 155: 10. |
74 | HAN G C, JIANG Q M, YE W J, et al. Fabrication of Pd NPs-supported porous carbon by integrating the reducing reactivity and carbon-rich network of lignin[J]. Scientific Reports, 2019, 9: 9. |
[1] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[4] | 张雪伟, 黄亚继, 许月阳, 程好强, 朱志成, 李金壘, 丁雪宇, 王圣, 张荣初. 碱性吸附剂对燃煤烟气中SO3的吸附特性[J]. 化工进展, 2023, 42(7): 3855-3864. |
[5] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[6] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[7] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[8] | 任建鹏, 吴彩文, 刘慧君, 吴文娟. 木质素-聚苯胺复合材料的制备及对刚果红的吸附[J]. 化工进展, 2023, 42(6): 3087-3096. |
[9] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[10] | 王久衡, 荣鼐, 刘开伟, 韩龙, 水滔滔, 吴岩, 穆正勇, 廖徐情, 孟文佳. 水蒸气强化纤维素模板改性钙基吸附剂固碳性能及强度[J]. 化工进展, 2023, 42(6): 3217-3225. |
[11] | 张巍, 秦川, 谢康, 周运河, 董梦瑶, 李婕, 汤云灏, 马英, 宋健. H2-SCR改性铂系催化剂低温脱硝的应用及性能强化挑战[J]. 化工进展, 2023, 42(6): 2954-2962. |
[12] | 马源, 肖晴月, 岳君容, 崔彦斌, 刘姣, 许光文. CeO2-Al2O3复合载体负载Ni基催化剂催化CO x 共甲烷化性能[J]. 化工进展, 2023, 42(5): 2421-2428. |
[13] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
[14] | 王嘉, 彭冲, 唐磊, 陆安慧. 渣油加氢催化剂活性相结构调控及对反应性能影响[J]. 化工进展, 2023, 42(4): 1811-1821. |
[15] | 蔡江涛, 候刘华, 兰雨金, 张晨陈, 刘国阳, 朱由余, 张建兰, 赵世永, 张亚婷. 沥青基多孔炭材料的制备及在超级电容器中的应用进展[J]. 化工进展, 2023, 42(4): 1895-1906. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |