化工进展 ›› 2021, Vol. 40 ›› Issue (8): 4587-4599.DOI: 10.16085/j.issn.1000-6613.2020-1923
唐垂云1,2,3(), 钟娟1,2,3, 吕莹1,2,3, 张明江1,2,4, 孙娟5, 刘兴宇1,2,4()
收稿日期:
2020-09-21
出版日期:
2021-08-05
发布日期:
2021-08-12
通讯作者:
刘兴宇
作者简介:
唐垂云(1996—),男,硕士研究生,研究方向为环境污染微生物修复。E-mail:基金资助:
TANG Chuiyun1,2,3(), ZHONG Juan1,2,3, LYU Ying1,2,3, ZHANG Mingjiang1,2,4, SUN Juan5, LIU Xingyu1,2,4()
Received:
2020-09-21
Online:
2021-08-05
Published:
2021-08-12
Contact:
LIU Xingyu
摘要:
铀及其衰变产物引起的土壤污染是全球关注的重大环境问题,不仅会引起生态风险,还会对人体健康造成威胁。因此,如何有效地解决铀污染、完善铀污染土壤修复技术体系,是实现铀矿冶行业可持续发展的关键。目前,铀污染土壤的修复技术主要有物理-化学修复、生物修复以及联合修复3种方式。本文首先介绍了铀在土壤中的赋存形态及其危害,然后对各种修复技术的研究现状及优缺点进行了详细综述,阐述了铀污染修复的影响因素,最后总结了目前铀污染土壤修复技术存在的挑战,并展望了该领域修复技术未来的发展方向,以期在实际应用中充分结合环境因素和各种修复方法的适用性,选择合适的修复技术实现污染土壤中铀的高效去除。
中图分类号:
唐垂云, 钟娟, 吕莹, 张明江, 孙娟, 刘兴宇. 土壤中铀污染修复技术研究进展[J]. 化工进展, 2021, 40(8): 4587-4599.
TANG Chuiyun, ZHONG Juan, LYU Ying, ZHANG Mingjiang, SUN Juan, LIU Xingyu. Research progress of uranium contaminated soil remediation technology[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4587-4599.
1 | BRUGGE D, DE LEMOS J L, OLDMIXON B. Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: a review[J]. Reviews on Environmental Health, 2005, 20(3): 177-194. |
2 | 孟佑婷, 张丰收, 王平, 等. 细菌还原U(Ⅵ)分子生物学机理的研究进展[J]. 中国环境科学, 2020, 40(1): 422-430. |
MENG Youting, ZHANG Fengshou, WANG Ping, et al. Review on the molecular mechanisms of U(Ⅵ) bioreduction[J]. China Environmental Science, 2020, 40(1): 422-430. | |
3 | 郑黄婷, 许明发, 向辉云, 等. 铀尾矿库辐射安全问题的现状分析及对策[J]. 核安全, 2019, 18(2): 9-13. |
ZHENG Huangting, XU Mingfa, XIANG Huiyun, et al. Status analysis and countermeasures for radiation safety of uranium tailings pond[J]. Nuclear Safety, 2019, 18(2): 9-13. | |
4 | WANG W H, LUO X G, LIU L, et al. Ramie (Boehmeria nivea)’s uranium bioconcentration and tolerance attributes[J]. Journal of Environmental Radioactivity, 2018, 184/185: 152-157. |
5 | WANG W H, LUO X G, WANG Z, et al. Heavy metal and metalloid contamination assessments of soil around an abandoned uranium tailings pond and the contaminations’ spatial distribution and variability[J]. International Journal of Environmental Research and Public Health, 2018, 15(11): E2401. |
6 | FATHI R A, MATTI L Y, AL-SALIH H S, et al. Environmental pollution by depleted uranium in Iraq with special reference to Mosul and possible effects on cancer and birth defect rates[J]. Medicine, Conflict and Survival, 2013, 29(1): 7-25. |
7 | BANALA U K, DAS N, TOLETI S R. Microbial interactions with uranium: towards an effective bioremediation approach[J]. Environmental Technology & Innovation, 2020, 21: 1-17. |
8 | MARKICH S J. Uranium speciation and bioavailability in aquatic systems: an overview[J]. The Scientific World Journal, 2002, 2: 707-729. |
9 | 周仲魁, 孙占学, 郑立莉, 等. 某铀矿区放射性核素对土壤微生物活性的影响研究[J]. 有色金属(冶炼部分), 2018(4): 75-80. |
ZHOU Zhongkui, SUN Zhanxue, ZHENG Lili, et al. Effects of radionuclides on soil microbial activity in a uranium mining area[J]. Nonferrous Metals (Extractive Metallurgy), 2018(4): 75-80. | |
10 | KENAROVA A, RADEVA G, DANOVA I, et al. Soil bacterial abundance and diversity of uranium impacted area in north western pirin mountain[J]. Biotechnology & Biotechnological Equipment, 2010, 24(S1): 469-473. |
11 | 钟娟, 刘兴宇, 张明江, 等. 铀污染的微生物修复技术研究进展[J]. 稀有金属, 2021, 45(1): 93-105. |
ZHONG Juan, LIU Xingyu, ZHANG Mingjiang, et al. Research progress of bioremediation technology for uranium contamination[J]. Chinese Journal of Rare Metals, 2021, 45(1): 93-105. | |
12 | 张琼, 王博, 王亮, 等. 切尔诺贝利和福岛核事故后放射性土壤修复研究进展[J]. 环境与可持续发展, 2016, 41(5): 117-121. |
ZHANG Qiong, WANG Bo, WANG Liang, et al. Study on remediation of contaminated soil after the accident of Chernobyl and Fukushima[J]. Environment and Sustainable Development, 2016, 41(5): 117-121. | |
13 | 王亮, 王喆, 余少青, 等. 日本福岛事故土壤放射性污染状况及应对措施[C]//2012中国环境科学学会学术年会. 南宁, 2012. |
WANG L, WANG Z, YU S Q, et al. The situation of soil radioactive contamination after the Fukushima accident in Japan and the countermeasures[C]//Annual Meeting of Chinese Society for Environment Science, Nanning, 2012. | |
14 | 周书葵, 肖江, 刘迎久, 等. 电动修复过程中电解质浓度对U(Ⅵ)迁移和能耗的影响[J]. 中国环境科学, 2019, 39(12): 5228-5239. |
ZHOU Shukui, XIAO Jiang, LIU Yingjiu, et al. Effect of electrolyte concentration on U(Ⅵ) migration behavior and energy utilization in electrokinetic remediation process[J]. China Environmental Science, 2019, 39(12): 5228-5239. | |
15 | 万小岗, 赵颜红, 习成成, 等. 铀污染土壤淋洗去污实验研究[J]. 环境工程, 2013, 31(S1): 710-712. |
WAN Xiaogang, ZHAO Yanhong, XI Chengcheng, et al. Study on the washing decontamination of uranium-contaminated soil[J]. Environmental Engineering, 2013, 31(S1): 710-712. | |
16 | 蒋海燕, 张伟, 周书葵, 等. 腐殖酸修饰凹凸棒对U(Ⅵ)的吸附性能及机理[J]. 环境工程学报, 2015, 9(2): 705-710. |
JIANG Haiyan, ZHANG Wei, ZHOU Shukui, et al. Adsorption properties and mechanism of U(Ⅵ) onto humic acid/attapulgite composites[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 705-710. | |
17 | 周书葵, 侯康龙, 刘迎九, 等. 不同固定剂对铀尾矿库中铀稳定效果的试验研究[J]. 原子能科学技术, 2018, 52(4): 583-589. |
ZHOU Shukui, HOU Kanglong, LIU Yingjiu, et al. Experimental study on immobilization of uranium in uranium tailing pond using different fixatives[J]. Atomic Energy Science and Technology, 2018, 52(4): 583-589. | |
18 | 李晓宝, 董焕焕, 任丽霞, 等. 螯合剂修复重金属污染土壤联合技术研究进展[J]. 环境科学研究, 2019, 32(12): 1993-2000. |
LI Xiaobao, DONG Huanhuan, REN Lixia, et al. Effects of chelating agent combination technologies on soil contaminated by heavy metals[J]. Research of Environmental Sciences, 2019, 32(12): 1993-2000. | |
19 | KANTAR C, HONEYMAN B D. Citric acid enhanced remediation of soils contaminated with uranium by soil Flushing and soil washing[J]. Journal of Environmental Engineering, 2006, 132(2): 247-255. |
20 | CREAN D E, LIVENS F R, SAJIH M, et al. Remediation of soils contaminated with particulate depleted uranium by multi stage chemical extraction[J]. Journal of Hazardous Materials, 2013, 263: 382-390. |
21 | FRANCIS C W, TIMPSON M E, WILSON J H. Bench- and pilot-scale studies relating to the removal of uranium from uranium-contaminated soils using carbonate and citrate lixiviants[J]. Journal of Hazardous Materials, 1999, 66(1/2): 67-87. |
22 | GONG Y Y, ZHAO D Y, WANG Q L. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade[J]. Water Research, 2018, 147: 440-460. |
23 | KIM Kyeong-Hee, KIM Soon-Oh, KIM Kyoung-Woong. Removal of uranium from kaolinite by electrokinetic remediation[J]. Journal of Korean Institute of Mineral and Energy Resources Engineering, 2003, 38(10): 2137-2163. |
24 | XU Y, ZONDLO J W, FINKLEA H O, et al. Electrosorption of uranium on carbon fibers as a means of environmental remediation[J]. Fuel Processing Technology, 2000, 68(3): 189-208. |
25 | PARK H M, KIM G N, KIM S S, et al. Improvement of pilot-scale electrokinetic remediation technology for uranium removal[J]. Journal of the Korean Radioactive Waste Society, 2013, 11(2): 77-83. |
26 | SHI ZH, DOU TJ, ZHANG H, et al. Electrokinetic remediation of uranium contaminated soil by ion exchange membranes [J]. Cell, 2016, 15(4): 5. |
27 | BUELT J L, FARNSWORTH R K. In situ vitrification of soils containing various metals[J]. Nuclear Technology, 1991, 96(2): 178-184. |
28 | SHAW P, ANDERSON B, DAVIS D. Laboratory scale vitrification of low-level radioactive nitrate salts and soils from the Idaho National Engineering Laboratory[R]. Office of Scientific and Technical Information (OSTI), 1993. |
29 | JANTZEN C M, PICKETT J B, RAMSEY W G, et al. Treatability studies on mixed (radioactive and hazardous) M-area F006 waste sludge: vitrification via the reactive additive stabilization process (RASP)[EB/OL]. 6 |
_waste_sludge_Vitrification_via_the_Reactive_Additive_Stabilization_Process_RASP. | |
30 | 王贝贝, 朱湖地, 陈静. 重金属污染土壤微波玻璃化技术研究[J]. 环境工程, 2013, 31(2): 96-98, 108. |
WANG Beibei, ZHU Hudi, CHEN Jing. Study on microwave vitrification technology of heavy metal contaminated soil[J]. Environmental Engineering, 2013, 31(2): 96-98, 108. | |
31 | CHEN S Z, SHU X Y, TANG H X, et al. Microwave vitrification of uranium-contaminated soil for nuclear test site and chemical stability[J]. Ceramics International, 2019, 45(10): 13334-13339. |
32 | SHU X Y, LI Y P, HUANG W X, et al. Rapid vitrification of uranium-contaminated soil: effect and mechanism[J]. Environmental Pollution, 2020, 263: 114539. |
33 | CHOUDHARY S, SAR P. Interaction of uranium (Ⅵ) with bacteria: potential applications in bioremediation of U contaminated oxic environments[J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(3): 347-355. |
34 | ZHOU C, VANNELA R, HYUN S P, et al. Growth of desulfovibrio vulgaris when respiring U(Ⅵ) and characterization of biogenic uraninite[J]. Environmental Science & Technology, 2014, 48(12): 6928-6937. |
35 | CHABALALA S, CHIRWA E M N. Uranium (Ⅵ) reduction and removal by high performing purified anaerobic cultures from mine soil[J]. Chemosphere, 2010, 78(1): 52-55. |
36 | WU Q, SANFORD R A, LÖFFLER F E. Uranium(Ⅵ) reduction by Anaeromyxobacter dehalogenans strain 2CP-C[J]. Applied & Environmental Microbiology, 2006, 72(5): 3608-3614. |
37 | MALEKZADEH F, FARAZMAND A, GHAFOURIAN H, et al. Uranium accumulation by a bacterium isolated from electroplating effluent[J]. World Journal of Microbiology and Biotechnology, 2002, 18(4): 295-302. |
38 | KATSENOVICH Y, CARVAJAL D, GUDURU R, et al. Assessment of the resistance to uranium (Ⅵ) exposure by Arthrobacter sp. isolated from Hanford site soil[J]. Geomicrobiology Journal, 2013, 30(2): 120-130. |
39 | CHOUDHARY S, SAR P. Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste[J]. Journal of Hazardous Materials, 2011, 186(1): 336-343. |
40 | BEAZLEY M J, MARTINEZ R J, SOBECKY P A, et al. Uranium biomineralization as a result of bacterial phosphatase activity: insights from bacterial isolates from a contaminated subsurface[J]. Environmental Science & Technology, 2007, 41(16): 5701-5707. |
41 | CELIK F, CAMAS M, KYEREMEH K, et al. Microbial sorption of uranium using Amycolatopsis sp. K47 isolated from uranium deposits[J]. Water, Air & Soil Pollution, 2018, 229(4): 1-14. |
42 | DING L, TAN W F, XIE S B, et al. Uranium adsorption and subsequent re-oxidation under aerobic conditions by Leifsonia sp. - coated biochar as green trapping agent[J]. Environmental Pollution, 2018, 242: 778-787. |
43 | HUANG W B, CHENG W C, NIE X Q, et al. Microscopic and spectroscopic insights into uranium phosphate mineral precipitated by bacillus mucilaginosus[J]. ACS Earth and Space Chemistry, 2017, 1(8): 483-492. |
44 | LI X L, DING C C, LIAO J L, et al. Bioaccumulation characterization of uranium by a novel Streptomyces sporoverrucosus dwc-3[J]. Journal of Environmental Sciences, 2016, 41: 162-171. |
45 | KUMAR R, ACHARYA C, JOSHI S R. Isolation and analyses of uranium tolerant Serratia marcescens strains and their utilization for aerobic uranium U(Ⅵ) bioadsorption[J]. The Journal of Microbiology, 2011, 49(4): 568-574. |
46 | ZHAO C S, LIU J, LI X Y, et al. Biosorption and bioaccumulation behavior of uranium on Bacillus sp. dwc-2: investigation by Box-Behenken design method[J]. Journal of Molecular Liquids, 2016, 221: 156-165. |
47 | 吴唯民, CARLEY Jack, WATSON David, 等. 地下水铀污染的原位微生物还原与固定: 在美国能源部田纳西橡树岭放射物污染现场的试验[J]. 环境科学学报, 2011, 31(3): 449-459. |
WU Weimin, CARLEY J, WATSON D, et al. Bioreduction and immobilization of uranium in situ: a case study at a USA Department of Energy radioactive waste site, Oak Ridge, Tennessee[J]. Acta Scientiae Circumstantiae, 2011, 31(3): 449-459. | |
48 | GHASEMI R, FATEMI F, MIR-DERIKVAND M, et al. Evaluation of mtr cluster expression in Shewanella RCRI7 during uranium removal[J]. Archives of Microbiology, 2020, 202(10): 2711-2726. |
49 | SHI L, FREDRICKSON J K, ZACHARA J M. Genomic analyses of bacterial porin-cytochrome gene clusters[J]. Front Microbiol, 2014, 5: 657. |
50 | MERROUN M L, SELENSKA-POBELL S. Bacterial interactions with uranium: an environmental perspective[J]. Journal of Contaminant Hydrology, 2008, 102(3/4): 285-295. |
51 | BEAZLEY M J, MARTINEZ R J, SOBECKY P A, et al. Nonreductive biomineralization of uranium(Ⅵ) phosphate via microbial phosphatase activity in anaerobic conditions[J]. Geomicrobiology Journal, 2009, 26(7): 431-441. |
52 | EHRLICH Henry Lutz, NEWMAN Dianne K. Geomicrobiology[M]. 5th ed. Florida: CRC Press, 2009. |
53 | NEWSOME L, MORRIS K, LLOYD J R. Uranium biominerals precipitated by an environmental isolate of serratia under anaerobic conditions[J]. PLoS One, 2015, 10(7): e0132392. |
54 | MACASKIE L E, EMPSON R M, CHEETHAM A K, et al. Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline HUO2PO4[J]. Science, 1992, 257(5071): 782-784. |
55 | LLOYD J R, MACASKIE L E. Bioremediation of radionuclide-containing wastewaters[M]. Washington D C: ASM Press, 2014: 277-327. |
56 | LEDERER F L, WEINERT U, GÜNTHER T J, et al. Identification of multiple putative S-layer genes partly expressed by Lysinibacillus sphaericus JG-B53[J]. Microbiology, 2013, 159(6): 1097-1108. |
57 | 司慧, 罗学刚, 望子龙, 等. 枯草芽孢杆菌对铀的富集及机理研究[J]. 中国农学通报, 2017, 33(8): 31-38. |
SI Hui, LUO Xuegang, WANG Zilong, et al. Biosorption of uranium by bacillus subtilis and its mechanism[J]. Chinese Agricultural Science Bulletin, 2017, 33(8): 31-38. | |
58 | LI X L, DING C C, LIAO J L, et al. Biosorption of uranium on Bacillus sp. dwc-2: preliminary investigation on mechanism[J]. Journal of Environmental Radioactivity, 2014, 135: 6-12. |
59 | MALAVIYA P, SINGH A. Phytoremediation strategies for remediation of uranium-contaminated environments: a review[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(24): 2575-2647. |
60 | ALSABBAGH A H, ABUQUDAIRA T M. Phytoremediation of Jordanian uranium-rich soil using sunflower[J]. Water, Air & Soil Pollution, 2017, 228(6): 1-9. |
61 | 聂小琴, 丁德馨, 李广悦, 等. 某铀尾矿库土壤核素污染与优势植物累积特征[J]. 环境科学研究, 2010, 23(6): 719-725. |
NIE Xiaoqin, DING Dexin, LI Guangyue, et al. Soil radionuclide contamination and radionuclide accumulation characteristics of competitive plants in a uranium tailings repository in South China[J]. Research of Environmental Sciences, 2010, 23(6): 719-725. | |
62 | SELVAKUMAR R, RAMADOSS G, MENON M P, et al. Challenges and complexities in remediation of uranium contaminated soils: a review[J]. Journal of Environmental Radioactivity, 2018, 192: 592-603. |
63 | JAGETIYA B, SHARMA A. Optimization of chelators to enhance uranium uptake from tailings for phytoremediation[J]. Chemosphere, 2013, 91(5): 692-696. |
64 | MIHALÍK J, TLUSTOŠ P, SZAKOVÁ J. Comparison of willow and sunflower for uranium phytoextraction induced by citric acid[J]. Journal of Radioanalytical and Nuclear Chemistry, 2010, 285(2): 279-285. |
65 | ABREU M M, NEVES O, MARCELINO M. Yield and uranium concentration in two lettuce (Lactuca sativa L.) varieties influenced by soil and irrigation water composition, and season growth[J]. Journal of Geochemical Exploration, 2014, 142: 43-48. |
66 | XU J, GONG Y B, ZHANG Q C. Differences of patience and uranium uptake and accumulation of uranium in soil for three plants[J]. Chemical Research and Application, 2009, 21: 322-326. |
67 | TANG L, BAI Y, DENG C. Restoration of uranium-contaminated soil hyperaccumulator and accumulation characteristics of the screening[J]. Nuclear Technology, 2009, 32: 136-140. |
68 | CHANG P C, KIM K W, YOSHIDA S, et al. Uranium accumulation of crop plants enhanced by citric acid[J]. Environmental Geochemistry and Health, 2005, 27(5/6): 529-538. |
69 | SHAHANDEH H, HOSSNER L R. Role of soil properties in phytoaccumulation of uranium[J]. Water, Air & Soil Pollution, 2002, 141(1/2/3/4): 165-180. |
70 | HUANG J W, BLAYLOCK M J, KAPULNIK Y, et al. Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants[J]. Environmental Science & Technology, 1998, 32(13): 2004-2008. |
71 | 陈保冬, 陈梅梅, 白刃. 丛枝菌根在治理铀污染环境中的潜在作用[J]. 环境科学, 2011, 32(3): 809-816. |
CHEN Baodong, CHEN Meimei, BAI Ren. Potential role of arbuscular mycorrhiza in bioremediation of uranium contaminated environments[J]. Environmental Science, 2011, 32(3): 809-816. | |
72 | 沙银花, 胡南, 陈思羽, 等. 雀稗-博落回间作强化修复铀污染土壤的研究[J]. 南华大学学报(自然科学版), 2019, 33(2): 22-26, 32. |
SHA Yinhua, HU Nan, CHEN Siyu, et al. Enhanced phytoremediation of uranium contaminated soils with paspalum scrobiculatum-macleaya cordata intercrop[J]. Journal of University of South China (Science and Technology), 2019, 33(2): 22-26, 32. | |
73 | WEIERSBYE I M, STRAKER C J, PRZYBYLOWICZ W J. Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 1999, 158(1/2/3/4): 335-343. |
74 | REN C G, KONG C C, WANG S X, et al. Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium[J]. Chemosphere, 2019, 217: 773-779. |
75 | LOZANO J C, BLANCO RODRÍGUEZ P, VERA TOMÉ F, et al. Enhancing uranium solubilization in soils by citrate, EDTA, and EDDS chelating amendments[J]. Journal of Hazardous Materials, 2011, 198: 224-231. |
76 | HAN Y. Phytoextraction using citric acid for enhanced removal of uranium from soil[J]. Journal of the Geological Society of Korea, 2014, 50(4): 501. |
77 | BAHEMMAT M, FARAHBAKHSH M, KIANIRAD M. Humic substances-enhanced electroremediation of heavy metals contaminated soil[J]. Journal of Hazardous Materials, 2016, 312: 307-318. |
78 | POPOV K I, YACHMENEV V G, BARINOV A. Enhancement of the electrokinetic remediation of soil contaminated with U(Ⅵ) by chelating agents[M]. Washington D C: American Chemical Society, 2005: 398-420. |
79 | JERDEN J L, SINHA A K. Geochemical coupling of uranium and phosphorous in soils overlying an unmined uranium deposit: Coles Hill, Virginia[J]. Journal of Geochemical Exploration, 2006, 91(1/2/3): 56-70. |
80 | SHENG L, SZYMANOWSKI J, FEIN J B. The effects of uranium speciation on the rate of U(Ⅵ) reduction by Shewanella oneidensis MR-1[J]. Geochimica et Cosmochimica Acta, 2011, 75(12): 3558-3567. |
81 | LAURETTE J, LARUE C, MARIET C, et al. Influence of uranium speciation on its accumulation and translocation in three plant species: oilseed rape, sunflower and wheat[J]. Environmental and Experimental Botany, 2012, 77: 96-107. |
82 | 刘军, 张志宾, 陈金和, 等. 钙-铀-碳酸络合物对红土吸附铀性能的影响[J]. 原子能科学技术, 2015, 49(8): 1359-1365. |
LIU Jun, ZHANG Zhibin, CHEN Jinhe, et al. Effect of calcium-uranyl-carbonate complex on adsorption of uranium on red soil[J]. Atomic Energy Science and Technology, 2015, 49(8): 1359-1365. | |
83 | ZOU C, SHA Y H, DING D X, et al. Aspergillus niger changes the chemical form of uranium to decrease its biotoxicity, restricts its movement in plant and increase the growth of Syngonium podophyllum[J]. Chemosphere, 2019, 224: 316-323. |
84 | YAMAGUCHI N, KAWASAKI A, IIYAMA I. Distribution of uranium in soil components of agricultural fields after long-term application of phosphate fertilizers[J]. Science of the Total Environment, 2009, 407(4): 1383-1390. |
85 | ZOU C, SHA Y H, DING D X, et al. Aspergillus niger changes the chemical form of uranium to decrease its biotoxicity, restricts its movement in plant and increase the growth of Syngonium podophyllum[J]. Chemosphere, 2019, 224: 316-323. |
86 | BEDNAR A J, MEDINA V F, ULMER-SCHOLLE D S, et al. Effects of organic matter on the distribution of uranium in soil and plant matrices[J]. Chemosphere, 2007, 70(2): 237-247. |
87 | MEHTA V S, MAILLOT F, WANG Z M, et al. Transport of U(Ⅵ) through sediments amended with phosphate to induce in situ uranium immobilization[J]. Water Research, 2015, 69: 307-317. |
88 | JOSEPH C, SCHMEIDE K, SACHS S, et al. Sorption of uranium (Ⅵ) onto Opalinus Clay in the absence and presence of humic acid in Opalinus Clay pore water[J]. Chemical Geology, 2011, 284(3/4): 240-250. |
89 | STOJANOVIĆ M, STEVANOVIĆ D, MILOJKOVIĆ J, et al. Influence of soil type and physical-chemical properties on uranium sorption and bioavailability[J]. Water, Air & Soil Pollution, 2012, 223(1): 135-144. |
90 | SCHINDLER M, LEGRAND C A, HOCHELLA M F. Alteration, adsorption and nucleation processes on clay-water interfaces: mechanisms for the retention of uranium by altered clay surfaces on the nanometer scale[J]. Geochimica et Cosmochimica Acta, 2015, 153: 15-36. |
91 | SHAHANDEH H, HOSSNER L R. Role of soil properties in phytoaccumulation of uranium[J]. Water, Air & Soil Pollution, 2002, 141(1/2/3/4): 165-180. |
92 | ECHEVARRIA G, SHEPPARD M I, MOREL J. Effect of pH on the sorption of uranium in soils[J]. Journal of Environmental Radioactivity, 2001, 53(2): 257-264. |
93 | XIE J C, LIN J F, ZHOU X H. pH-Dependent microbial reduction of uranium (Ⅵ) in carbonate-free solutions: UV-vis, XPS, TEM, and thermodynamic studies[J]. Environmental Science and Pollution Research, 2018, 25(22): 22308-22317. |
94 | BEAZLEY M J, MARTINEZ R J, WEBB S M, et al. The effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soils[J]. Geochimica et Cosmochimica Acta, 2011, 75(19): 5648-5663. |
[1] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[2] | 吕莹, 胡学武, 陈素素, 刘兴宇, 陈勃伟, 张明江. 多环芳烃污染土壤的微生物修复技术研究进展[J]. 化工进展, 2022, 41(6): 3249-3262. |
[3] | 潘云飞, 唐正, 彭欣怡, 高品. 石油烃污染土壤微生物修复技术研究现状及进展[J]. 化工进展, 2021, 40(8): 4562-4572. |
[4] | 余关龙, 彭海渊, 王世涛, 汪国梁, 陈宏, 杜春艳, 刘媛媛, 孙士权, 禹丽娥, 王建武. 固定化生物吸附剂对Cd(Ⅱ)的去除性能及机理[J]. 化工进展, 2021, 40(5): 2882-2892. |
[5] | 包清华, 黄立信, 修建龙, 俞理, 崔庆锋, 马原栋, 伊丽娜. 油气田含油污泥生物处理技术研究进展[J]. 化工进展, 2021, 40(5): 2762-2773. |
[6] | 田坤, 姚丹丹, 赵元添, 郭丽莉, 董元华, 刘云. 环境中1,4-二烷污染处理技术研究进展[J]. 化工进展, 2021, 40(10): 5708-5719. |
[7] | 孙烁,刘其友,陈水泉,赵朝成,于文赫. 利用响应面法对L-2菌株降解石油烃进行优化[J]. 化工进展, 2019, 38(12): 5512-5518. |
[8] | 姜岩, 张晓华, 梁新元, 张贤明. 生物法在油田地面处理及地下开采系统中的应用[J]. 化工进展, 2016, 35(11): 3383-3391. |
[9] | 吴作军,卢滇楠,张敏莲,刘 铮. 微生物分子生态学技术及其在石油污染土壤修复中的应用现状与展望 [J]. 化工进展, 2010, 29(5): 789-. |
[10] | 韩慧龙,刘 铮. 分子生物学技术在土壤生物修复中的应用及展望 [J]. 化工进展, 2007, 26(6): 782-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |