化工进展 ›› 2021, Vol. 40 ›› Issue (5): 2762-2773.DOI: 10.16085/j.issn.1000-6613.2020-1299
包清华1,2(), 黄立信3(), 修建龙3, 俞理3, 崔庆锋3, 马原栋3, 伊丽娜3
收稿日期:
2020-07-09
出版日期:
2021-05-06
发布日期:
2021-05-24
通讯作者:
黄立信
作者简介:
包清华(1991—),女,博士研究生,研究方向为含油污泥生物处理。E-mail:基金资助:
BAO Qinghua1,2(), HUANG Lixin3(), XIU Jianlong3, YU Li3, CUI Qingfeng3, MA Yuandong3, YI Lina3
Received:
2020-07-09
Online:
2021-05-06
Published:
2021-05-24
Contact:
HUANG Lixin
摘要:
油气田含油污泥是石油钻井、运输、储存过程中产生的主要污染物。随着油气田开发的逐步深入,含油污泥所带来的生产和环境矛盾越来越突出。原有的含油污泥处理方式已经不适用新的环保要求。目前,物理化学处理方法初步实现了含油污泥减量化和原油资源回收,但其并不能从根本上去除含油污泥的石油污染物,甚至有可能造成二次污染。生物处理方法有低毒、环保、效率高等特点,具有较广泛的应用前景。本文介绍了含油污泥的来源、特征、处理标准和环境影响。将生物处理技术分为生物表面活性剂(BSF)洗油法和生物降解法,并从BSF的类型和特性、洗油机理、降解工艺、降解菌、对处理效果的影响因素以及BSF增强生物降解作用等方面进行了详细阐述。文章指出BSF洗油法主要应用于高含油污泥(含油率≥6%)的处理,含油率可降到2%以下;对于低含油污泥(含油率≤6%)采用微生物降解技术处理,可达到0.3%的生态标准。生物处理技术是最有前景的满足资源回收的环保型的含油污泥处理技术。
中图分类号:
包清华, 黄立信, 修建龙, 俞理, 崔庆锋, 马原栋, 伊丽娜. 油气田含油污泥生物处理技术研究进展[J]. 化工进展, 2021, 40(5): 2762-2773.
BAO Qinghua, HUANG Lixin, XIU Jianlong, YU Li, CUI Qingfeng, MA Yuandong, YI Lina. Development in the biological treatment of oily sludge in oil and gas fields[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2762-2773.
处理方法 | 技术原理 | 优点 | 缺点 |
---|---|---|---|
脱水干化/填埋 | 机械分离降低含水率,晾晒风化,挖坑填埋 | 工艺简单 | 效果差,长期污染 |
溶剂萃取 | 用有机溶剂萃取石油烃(PHC),达到油、泥分离 | 普适性强,溶剂可循环利用 | 溶剂易挥发,有毒,过程复杂 |
焚烧 | 高温燃烧 | 技术成熟,处理彻底 | 造成二次污染,成本高,能耗大 |
高温热解法 | 无氧环境中,间接加热到400~500℃,转化为气态,再冷却为油相 | 回收率高,处理彻底,经济,环保 | 设备成本高,能耗大,操作复杂 |
热化学洗油+ 离心脱水 | 经加热、加化学试剂,洗出PHC,通过絮凝、沉降、离心,实现油、水、泥分离 | 适应性强,回收率高,技术成熟 | 成本高,工艺复杂,造成二次污染 |
污泥调剖 | 与乳化剂、 稳定剂混合配制成高黏度的悬浮液,注入油气田地层 | 制备简单,容易实施 | 无法回收原油 |
超声波处理 | 通过机械振动和加热降低原油黏度和油水界面膜刚性,增加液滴流动性,促使聚结 | 成本较低,设备简单,适应性好 | 对超声波的声强、处理时间等参数要求严格 |
生物处理法 | 微生物在生长过程中利用PHC为碳源,转化为CO2和H2O | 环境友好,处理彻底,经济,高效 | 周期长,不适合用于高含油污泥,占地面积大,技术不成熟 |
表1 含油污泥处理工艺概述
处理方法 | 技术原理 | 优点 | 缺点 |
---|---|---|---|
脱水干化/填埋 | 机械分离降低含水率,晾晒风化,挖坑填埋 | 工艺简单 | 效果差,长期污染 |
溶剂萃取 | 用有机溶剂萃取石油烃(PHC),达到油、泥分离 | 普适性强,溶剂可循环利用 | 溶剂易挥发,有毒,过程复杂 |
焚烧 | 高温燃烧 | 技术成熟,处理彻底 | 造成二次污染,成本高,能耗大 |
高温热解法 | 无氧环境中,间接加热到400~500℃,转化为气态,再冷却为油相 | 回收率高,处理彻底,经济,环保 | 设备成本高,能耗大,操作复杂 |
热化学洗油+ 离心脱水 | 经加热、加化学试剂,洗出PHC,通过絮凝、沉降、离心,实现油、水、泥分离 | 适应性强,回收率高,技术成熟 | 成本高,工艺复杂,造成二次污染 |
污泥调剖 | 与乳化剂、 稳定剂混合配制成高黏度的悬浮液,注入油气田地层 | 制备简单,容易实施 | 无法回收原油 |
超声波处理 | 通过机械振动和加热降低原油黏度和油水界面膜刚性,增加液滴流动性,促使聚结 | 成本较低,设备简单,适应性好 | 对超声波的声强、处理时间等参数要求严格 |
生物处理法 | 微生物在生长过程中利用PHC为碳源,转化为CO2和H2O | 环境友好,处理彻底,经济,高效 | 周期长,不适合用于高含油污泥,占地面积大,技术不成熟 |
种类 | 制造微生物 | 类型 | 表面张力 /mN·m-1 | 界面张力 /mN·m-1 | CMC /mg·L-1 | HLB① |
---|---|---|---|---|---|---|
鼠李糖脂 | 假单胞菌/伯克氏菌类 | 阴离子 | 25~30[ | 0.001~4.0[ | 5~2000[ | 10~15[ |
槐糖脂 | 酵母菌类 | 阴离子/非离子 | 30~37[ | 1.0~2.0[ | 17~100[ | 9~13[ |
海藻糖脂 | 念珠菌/红球菌/放线菌 | 非离子 | 27.9~36[ | 5~17[ | 4~37[ | 11[ |
脂肽 | 芽孢杆菌/链霉素/假单胞菌/沙雷氏菌/曲霉菌/游动放线菌 | 非离子 | 27~32[ | <1[ | 23~160[ | 17[ |
表2 常见的BSF的来源及理化性质
种类 | 制造微生物 | 类型 | 表面张力 /mN·m-1 | 界面张力 /mN·m-1 | CMC /mg·L-1 | HLB① |
---|---|---|---|---|---|---|
鼠李糖脂 | 假单胞菌/伯克氏菌类 | 阴离子 | 25~30[ | 0.001~4.0[ | 5~2000[ | 10~15[ |
槐糖脂 | 酵母菌类 | 阴离子/非离子 | 30~37[ | 1.0~2.0[ | 17~100[ | 9~13[ |
海藻糖脂 | 念珠菌/红球菌/放线菌 | 非离子 | 27.9~36[ | 5~17[ | 4~37[ | 11[ |
脂肽 | 芽孢杆菌/链霉素/假单胞菌/沙雷氏菌/曲霉菌/游动放线菌 | 非离子 | 27~32[ | <1[ | 23~160[ | 17[ |
技术分类 | 优点 | 缺点 |
---|---|---|
地耕法 | 成本较低,操作简单,能耗低,处理量大 | ①易受气候条件影响;②存在二次污染;③需要面积大;④耗时 |
堆肥法 | ①保持代谢过程中产生的热量;②环保,VOCs的排放通过辅助收集单元控制;③易于设计和实施 | ①处理能力较差;②需要面积较大;③处理时间较长 |
生物泥浆反应器法 | ①快速有效;②需要土地面积小 | ①处理成本高;②需要预处理;③产生VOCs需要处理;④处理后,混合物需要脱水,增加成本 |
表4 含油污泥生物降解技术
技术分类 | 优点 | 缺点 |
---|---|---|
地耕法 | 成本较低,操作简单,能耗低,处理量大 | ①易受气候条件影响;②存在二次污染;③需要面积大;④耗时 |
堆肥法 | ①保持代谢过程中产生的热量;②环保,VOCs的排放通过辅助收集单元控制;③易于设计和实施 | ①处理能力较差;②需要面积较大;③处理时间较长 |
生物泥浆反应器法 | ①快速有效;②需要土地面积小 | ①处理成本高;②需要预处理;③产生VOCs需要处理;④处理后,混合物需要脱水,增加成本 |
石油污染物 | 微生物名称 |
---|---|
脂肪族化合物 | 不动杆菌、芽孢杆菌、假单胞菌、红球菌、微球菌、脱硫藻、脱球菌、念珠菌、假酶菌 |
单环芳烃 | 不动杆菌、芽孢杆菌、假单胞菌、红球菌、鞘氨醇杆菌、远古细菌 |
多环芳烃 | 芽孢杆菌、假单胞菌 |
胶质 | 假单胞菌、肠杆菌、莫拉克斯氏菌 |
沥青质 | 芽孢杆菌、短杆菌、葡萄球菌和棒状杆菌、黄曲霉、黑曲霉 |
表5 PHC降解菌
石油污染物 | 微生物名称 |
---|---|
脂肪族化合物 | 不动杆菌、芽孢杆菌、假单胞菌、红球菌、微球菌、脱硫藻、脱球菌、念珠菌、假酶菌 |
单环芳烃 | 不动杆菌、芽孢杆菌、假单胞菌、红球菌、鞘氨醇杆菌、远古细菌 |
多环芳烃 | 芽孢杆菌、假单胞菌 |
胶质 | 假单胞菌、肠杆菌、莫拉克斯氏菌 |
沥青质 | 芽孢杆菌、短杆菌、葡萄球菌和棒状杆菌、黄曲霉、黑曲霉 |
1 | 吴少林,孙智毅,楼紫阳. 含油污泥研究现状及发展方向[J]. 有色冶金设计与研究, 2017, 38(6): 114-118. |
WU Shaolin, SUN Zhiyi, LOU Ziyang. The development of oily sludge treatment process in oilfield and refinery[J]. Nonferrous Metals Engineering & Research, 2017, 38(6): 114-118. | |
2 | SILVA L J D,ALVES F C,FRANCA F P D, et al. A review of the technological solutions for the treatment of oily sludges from petroleum refineries[J]. Waste Management & Research, 2012, 30(10): 1016-1030. |
3 | RAMASWAMY B,KAR D D,DE S. A study on recovery of oil from sludge containing oil using froth flotation[J]. Journal of Environmental Management, 2007, 85(1): 150-154. |
4 | TIAN Y,MCGILL W B,WHITCOMBE T W, et al. Ionic liquid-enhanced solvent extraction for oil recovery from oily sludge[J]. Energy & Fuels, 2019, 33: 3429-3438. |
5 | HE S L,TAN X C,HU X, et al. Effect of ultrasound on oil recovery from crude oil containing sludge[J]. Environmental Technology, 2019, 40(11): 1-7. |
6 | NEJAD Y S,JAAFARZADEH N,AHMADI M, et al. Remediation of oily sludge wastes using biosurfactant produced by bacterial isolate pseudomonas balearica strain Z8[J]. Journal of Environmental Health Science and Engineering, 2020, 5: 1-9. |
7 | 李文英, 李阳, 马艳飞, 等. 含油污泥资源化处理方法进展[J]. 化工进展, 2020, 39(10): 4191-4199. |
LI Wenying, LI Yang, MA Yanfei, et al. Progress of resource treatment methods for oily sludge[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4191-4199. | |
8 | 新疆吾尔自治区环境保护厅. 油气田含油污泥综合利用污染控制要求: [S]. 乌鲁木齐: 新疆维吾尔自治区质量技术监督局, 2017. |
Environmental Protection Department of Xinjiang Wuer Autonomous Region. Pollution control requirements for comprehensive utilizition of oil and gas field oily sludge: [S]. Urumqi: Quality and Technical Supervision Bureau of Xinjiang Uygur Autonomous Region, 2017. | |
9 | 王会, 谢康, 向龙斌. 关于含油污泥处理现状研究[J]. 环境与可持续发展, 2016, 5: 122-127. |
WANG Hui, XIE Kang, XIANG Longbin. Research on the status quo of oily sludge treatment[J]. Environment and Sustainable Development, 2016, 41(5):122-127. | |
10 | JARVIS F G, JOHNSON M J. A glyco-lipide produced by Pseudomonas aeruginosa[J]. Journal of the American Chemical Society, 1949, 71(12): 4124-4126. |
11 | BANAT I M,SAMARAH N,MURAD M, et al. Biosurfactant production and use in oil tank clean-up[J]. Technical Communication, 1991, 7: 80-88. |
12 | NOORDMAN W H,J-W BRUINING,WIETZES P, et al. Facilitated transport of a PAH mixture by a rhamnolipid biosurfactant in porous silica matrices[J]. Journal of Contaminant Hydrology, 2000, 44: 119-140. |
13 | 刘佳, 李政, 李凤艳, 等. 生物表面活性剂的研究进展[J]. 2018, 356(9): 51-56. |
LIU Jia, LI Zheng, LI Fengyan, et al. Research progress of biological surfactant[J]. 2018, 356(9): 51-56. | |
14 | LIU G,ZHONG H,YANG X, et al. Advances in applications of rhamnolipids biosurfactant in environmental remediation: a review[J]. Biotechnology and Bioengineering, 2018, 115(4): 796-814. |
15 | 马晓静. 槐糖脂合成的氮源代谢调控及槐糖脂的廉价底物生产和性质研究[D]. 济南:山东大学, 2012. |
MA Xiaojing. Nitrogen metabolic regulation of sophorolipids synthesis, characteristics of sophorolipids and sophorolipids production from low-cost substrate[D]. Jinan: Shangdong University, 2012. | |
16 | MARQUES A M,PINAZO A,FARFAN M, et al. The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7[J]. Chemistry and Physics of Lipids, 2009, 158(2): 110-117. |
17 | PARRA J L,GUINEA J,MANRESA M A, et al. Chemical characterization and physicochemical behavior of biosurfactants[J]. Journal of the American Oil Chemists Society, 1989, 66(1): 141-145. |
18 | GUDIñA E J,RODRIGUES A I,ALVES E, et al. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation[J]. Bioresource Technology, 2015, 177: 87-93. |
19 | 吴虹, 汪薇, 韩双艳. 鼠李糖脂生物表面活性剂的研究进展[J]. 微生物学通报, 2007, 34(1): 148-152. |
WU Hong, WANG Wei, HAN Shuangyan. Recent progress on rhamnolipid biosurfactant[J]. Microbiology China, 2007, 34(1): 148-152. | |
20 | 刘波, 张红梅. 鼠李糖脂应用于三次采油的实验研究[J]. 油气采收率技术, 1997, 4(3): 20-25. |
LIU Bo, ZHANG Hongmei. Experimental study on application of rhamnolipid in tertiary oil recovery[J]. Petroleum Geology and Recovery Efficiency, 1997, 4(3): 20-25. | |
21 | 谈菲. 鼠李糖脂对几种直链烷烃的增溶行为研究[D]. 长沙: 湖南大学, 2014. |
TAN Fei. Research on the solubilization behavior of alkanes by rhamnolipid[D]. Changsha: Hunan University, 2014, | |
22 | 李俊超, 张卫华. 生物表面活性剂在石油污染土壤修复中的应用潜力[J]. 中国资源综合利用, 2019, 37(1): 74-76. |
LI Junchao, ZHANG Weihua. Application potential of biosurfactant in remediation of soil contaminated by petroleum[J]. China Resources Comprehensive Utilization, 2019, 37(1): 74-76. | |
23 | HIRATA Y,RYU M,ODA Y, et al. Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants[J]. Journal of Bioscience & Bioengineering, 2009, 108(2): 142-146. |
24 | ZHANG L,SOMASUNDARAN P,SINGH S K, et al. Synthesis and interfacial properties of sophorolipid derivatives[J]. 2004, 240(1/2/3): 75-82. |
25 | 宋丹丹. 生物表面活性剂复配行为及在疏水性有机污染修复中的应用[D]. 青岛: 中国海洋大学, 2013. |
SONG Dandan. Micelle behaviors of binary mixed biosurfactants and their applications in remediation of hydrophobic organics contaminated sites[D]. Qingdao: Ocean University of China, 2013. | |
26 | PEREIRA J F B,GUDIÑA E J,COSTA R, et al. Optimization and characterization of biosurfactant production by bacillus subtilis isolates towards microbial enhanced oil recovery applications[J]. Fuel, 2013, 111(9): 259-268. |
27 | MUKHERJEE S,DAS P,SIVAPATHASEKARAN C, et al. Antimicrobial biosurfactants from marine bacillus circulans: extracellular synthesis and purification[J]. Letters in Applied Microbiology, 2010, 48(3): 281-288. |
28 | 陈云瑛. 脂肽生物表面活性剂的制备、理化性质和抑菌活性研究[D]. 青岛: 中国海洋大学, 2008. |
CHEN Yunying. Studies on production、physicochemical properties and antimicrobial activity research of lipopeptide[D]. Qingdao: Ocean University of China, 2008. | |
29 | BANAT I M,FRANZETTI A,GANDOLFI I, et al. Microbial biosurfactants production, applications and future potential[J]. Appl. Microbiol. Biotechnol., 2010, 87(2): 427-444. |
30 | KANG S W,KIM Y B,SHIN J D, et al. Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid[J]. Applied Biochemistry and Biotechnology, 2009, 160(3): 780-790. |
31 | LAI C C,HUANG Y C,WEI Y H, et al. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil[J]. Journal of Hazardous Materials, 2009, 167(1/3): 609-614. |
32 | PENG S,WU W,CHEN J. Removal of PAHs with surfactant-enhanced soil washing: influencing factors and removal effectiveness[J]. Chemosphere, 2011, 82(8): 1173-1177. |
33 | LIU C H,ZHANG Y,SUN S, et al. Oil recovery from tank bottom sludge using rhamnolipids[J]. Journal of Petroleum Science and Engineering, 2018, 170: 14-20. |
34 | LIU X,YAO T,LAI R, et al. Recovery of crude oil from oily sludge in an oilfield by sophorolipid[J]. Petroleum Science and Technology, 2019, 37(13): 1582-1588. |
35 | 黄立信, 刘楚晗, 张尹, 等. 生物表面活性剂在含油污泥资源化回收中的应用研究[J]. 化学与生物工程, 2018, 35(9): 49-54, 59. |
HUANG Lixin, LIU Chuhan, ZHANG Yin, et al. Application of biosurfactant in oil recovery from oily sludge[J]. Chemistry &Bioengineering, 2018, 35(9): 49-54, 59. | |
36 | YAN P,LU M,YANG Q, et al. Oil recovery from refinery oily sludge using a rhamnolipid biosurfactant-producing pseudomonas[J]. Bioresource Technology, 2012, 116: 24-28. |
37 | KANG S W,KIM Y B,SHIN J D, et al. Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid[J]. Appl. Biochem. Biotechnol., 2010, 160(3): 780-790. |
38 | WANG Z,WU T,ZHOU W, et al. Surface properties and micellar molecular interaction in binary systems of a biosurfactant sodium deoxycholate (nadc) with conventional surfactants[J]. Journal of Surfactants and Detergents, 2010, 14(3): 391-400. |
39 | 陈贤, 陈弘毅, 张贤明, 等. 复合生物表面活性剂处理含油污泥实验研究[J]. 石油与天然气化工, 2015, 44(6): 122-124. |
CHEN Xian, CHEN Hongyi, ZHANG Xianming, et al. Experimental studies on oily sludge treatment using biosurfactant complexes[J]. Chemical Engineering of Oil & Gas, 2015, 44(6): 122-124. | |
40 | 马满英, 刘有势, 施周. 生物与化学表面活性剂对多氯联苯的协同增溶作用[J]. 生态环境, 2008, 17(2): 466-470. |
MA Manying, LIU Youshi, SHI Zhou. Synergistic solubilization of biological and chemical surfactants on PCBs[J]. Ecology and Environmental Sciences, 2008, 17(2): 466-470. | |
41 | DUAN M,WANG X,FANG S, et al. Treatment of Daqing oily sludge by thermochemical cleaning method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554: 272-278. |
42 | 龙绛雪, 傅海燕, 高攀峰, 等. 生物-非离子型表面活性剂对土壤石油污染的清除[J]. 湖北农业科学, 2014, 53(6): 1277-1280, 1326. |
LONG Jiangxue, FU Haiyan, GAO Panfeng, et al. Removing petroleum polluted soil with biological nonionic surfactant[J]. Hubei Agricultural Sciences, 2014, 53(6): 1277-1280, 1326. | |
43 | 郑承纲. 微生物提高采收率技术研究[D]. 廊坊:中国科学院研究生院(渗流流体力学研究所), 2010. |
ZHENG Chenggang. Research on microbial enhanced oil recoery[D]. Langfang: Institute of Porous Flow & Fluid Mechanics, CAS, 2010. | |
44 | MARIN J A,HERNANDEZ T,GARCIA C. Bioremediation of oil refinery sludge by landfarming in semiarid conditions: influence on soil microbial activity[J]. Environmental Research, 2005, 98(2): 185-195. |
45 | ADMON S,GREEN M,AVNIMELECH Y. Biodegradation kinetics of hydrocarbons in soil during land treatment of oily sludge[J]. Bioremediation Journal, 2001, 5(3): 193-209. |
46 | MISHRA S,JYOT J,KUHAD R C, et al. In situ bioremediation potential of an oily sludge-degrading bacterial consortium[J]. Current Microbiology, 2001, 43(5): 328-335. |
47 | HEJAZI R F,HUSAIN T. Landfarm performance under arid conditions. 2. Evaluation of parameters[J]. Environmental Science & Technology, 2004, 38(8): 2457-2469. |
48 | 雷江辉. 生物热洗+微生物降解技术处理含油污泥的室内实验研究[J]. 油气田地面工程, 2020, 39(4): 40-44. |
LEI Jianghui.Laboratory experimental study of oily sludge treatment by biological heat washing and microbial degradation technology[J]. Oil-Gas Field Surface Engineering,2020,39(4):40-44. | |
49 | WANG X,WANG Q,WANG S, et al. Effect of biostimulation on community level physiological profiles of microorganisms in field-scale biopiles composed of aged oil sludge[J]. Bioresource Technology, 2012, 111(3): 308-315. |
50 | LIU W,LUO Y,YING T, et al. Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes[J]. Environmental Geochemistry Health, 2010, 32(1): 23-29. |
51 | 任鹏, 李照林, 杨虎, 等. 微生物处理含油污泥工艺研究[J]. 油气田环境保护, 2017, 27(4): 15-17. |
REN Peng, LI Zhaolin, YANG Hu, et al.Study on microbial treatment of oily sludge[J]. Environmental Protection of Oil & Gas Fields,2017,4(27):15-17. | |
52 | OUYANG W,LIU H,MURYGINA V, et al. Comparison of bio-augmentation and composting for remediation of oily sludge: a field-scale study in China[J]. Process Biochemistry, 2005, 40(12): 3763-3768. |
53 | KRIIPSALU M,MARQUES M, NAMMARI R D, et al. Bio-treatment of oily sludge: the contribution of amendment material to the content of target contaminants, and the biodegradation dynamics[J]. Journal of Hazardous Materials, 2007, 148(3): 616-622. |
54 | AYOTAMUNO M,OKPARANMA R,NWENEKA E, et al. Bio-remediation of a sludge containing hydrocarbons[J]. Applied Energy, 2007, 84(9): 936-943. |
55 | MACHIN-RAMIREZ C,OKOH A I,MORALES D, et al. Slurry-phase biodegradation of weathered oily sludge waste[J]. Chemosphere, 2008, 70(4): 737-744. |
56 | WARD O,SINGH A,HAMME J V Y. Accelerated biodegradation of petroleum hydrocarbon waste[J]. Journal of Industrial Microbiology & Biotechnology, 2003, 30(5): 260-270. |
57 | ATLAS R M. Microbial hydrocarbon degradation—bioremediation of oil spills[J]. Journal of Chemical Technology & Biotechnology, 1991, 52(2): 149-156. |
58 | ZHENG M,WANG W,HAYES M, et al. Degradation of Macondo 252 oil by endophytic Pseudomonas putida[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 643-648. |
59 | PAL S,KUNDU A,BANERJEE I D, et al. Genome analysis of crude oil degrading Franconibacter pulveris strain DJ34 revealed its genetic basis for hydrocarbon degradation and survival in oil contaminated environment[J]. Genomics, 2017, 109(5/6): 374-382. |
60 | GHOLAMI-SHIRI J,MOWLA D,DEHGHANI S, et al. Exploitation of novel synthetic bacterial consortia for biodegradation of oily-sludge TPH of iran gas and oil refineries[J]. Journal of Environmental Chemical Engineering, 2017, 5(3): 2964-2975. |
61 | GHAZALI F M,RAHMAN R N Z A,SALLEH A B, et al. Biodegradation of hydrocarbons in soil by microbial consortium[J]. International Biodeterioration & Biodegradation, 2004, 54(1): 61-67. |
62 | LEAHY J G,COLWELL R R. Microbial degradation of hydrocarbons in the environment[J]. Microbiological Reviews, 1990, 54(3): 305-315. |
63 | 冯晋阳, 吴小宁. 原油生物降解影响因素的试验研究[J]. 污染防治技术, 2009, 22(1): 1-3. |
FENG Jinyang, WU Xiaoning. Test study on influence factors of crude oil biodegradation[J]. Pollution Control Technology, 2009, 22(1): 1-3. | |
64 | 张慧慧, 宋学勇, 张忠智, 等. 石油污染土壤的生物电化学修复技术及其关键因素[J]. 化学与生物工程, 2018, 35(7): 1-5. |
ZHANG Huihui, SONG Xueyong, ZHANG Zhongzhi, et al. Bioelectrochemical remediation technology of petroleum contaminated soil and its key factors[J]. Chemistry & Bioengineering, 2018, 35(7): 1-5. | |
65 | TODA H,ITOH N. Isolation and characterization of styrene metabolism genes from styrene-assimilating soil bacteria Rhodococcus sp. ST-5 and ST-10[J]. Journal of Bioscience and Bioengineering, 2012, 113(1): 12-19. |
66 | BESKOSKI V P,GOJGIC-CVIJOVIC G,MILIC J, et al. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)--a field experiment[J]. Chemosphere, 2011, 83(1): 34-40. |
67 | ZHAO D,LIU C,LIU L, et al. Selection of functional consortium for crude oil-contaminated soil remediation[J]. International Biodeterioration & Biodegradation, 2011, 65(8): 1244-1248. |
68 | DIAS R L,RUBERTO L,HERNáNDEZ E, et al. Bioremediation of an aged diesel oil-contaminated antarctic soil: evaluation of the “on site” biostimulation strategy using different nutrient sources[J]. International Biodeterioration & Biodegradation, 2012, 75: 96-103. |
69 | MARTíNEZ ÁLVAREZ L M,BALBO A LO,CORMACK W P MAC, et al. Bioremediation of a petroleum hydrocarbon-contaminated antarctic soil: optimization of a biostimulation strategy using response-surface methodology (RSM)[J]. Cold Regions Science and Technology, 2015, 119: 61-67. |
70 | VARJANI S J. Microbial degradation of petroleum hydrocarbons[J]. Bioresource Technology, 2017, 223: 277-286. |
71 | WALWORTH J,POND A,SNAPE I, et al. Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil[J]. Cold Regions Science and Technology, 2007, 48(2): 84-91. |
72 | WALWORTH J,POND A,SNAPE I, et al. Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil[J]. Cold Regions Science and Technology, 2007, 48(2): 84-91. |
73 | TSOMIDES H J,HUGHES J B,THOMAS J M, et al. Effect of surfactant addition on phenanthrene biodegradation in sediments[J]. Environmental Toxicology and Chemistry, 1995, 14(6): 953-959. |
74 | KUYUKINA M S,IVSHINA I B,MAKAROV S O, et al. Effect of biosurfactants on crude oil desorption and mobilization in a soil system[J]. Environment International, 2005, 31(2): 155-161. |
75 | LEE D H,CODY R D,KIM D J, et al. Effect of soil texture on surfactant-based remediation of hydrophobic organic-contaminated soil[J]. Environment International, 2002, 27(8): 681-688. |
76 | 张丽芳,肖红,魏德洲. 表面活性剂对土壤石油污染物微生物降解的影响[J]. 辽宁化工, 2002, 31(12): 509-513. |
ZHANG Lifang, XIAO Hong, WEI Dezhou. Effects of surfactants on the microbial degradation of soil petroleum pollutants[J]. Liaoning Chemical Industry, 2002, 31(12): 509-513. | |
77 | MAKKAR R S,ROCKNE K J. Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons[J]. Environmental Toxicology and Chemistry, 2003, 22(10): 2280-2292. |
78 | 陈忠喜,郭书海,刘广民, 等. 除油生物表面活性剂产生菌的分离及其特性[J]. 哈尔滨工业大学学报, 2007, 39(4): 586-588. |
CHEN Zhongxi, GUO Shuhai, LIU Guangmin, , et al. Isolation and characteristics of the degreasing biosurfactant bacteria[J]. Journal of Harbin Institute of Technology, 2007, 39(4): 586-588. | |
79 | ZHOU W,ZHU L. Solubilization of pyrene by anionic-nonionic mixed surfactants[J]. Journal of Hazardous Materials, 2004, 109(1): 213-220. |
80 | 孙雨希, 杨宗霖, 于国辉, 等. 槐糖脂生物表面活性剂和石油烃降解菌增效含油污泥生物修复研究[J]. 中国海洋大学学报, 2017, 47(10): 72-80. |
SUN Yuxi, YANG Zonglin, YU Guohui, et al. Sophorolipid biosurfactant and petroleum hydrocarbon degrading bacteria synergistic bioremediation of oily sludge[J]. Periodical of Ocean University of China, 2017, 47(10): 72-80. |
[1] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[2] | 杨子育, 朱玲, 王文龙, 于超凡, 桑义敏. 阴燃法处理含油污泥的研究及应用进展[J]. 化工进展, 2023, 42(7): 3760-3769. |
[3] | 李光文, 华渠成, 黄作鑫, 达志坚. 聚甲基丙烯酸酯类黏度指数改进剂的研究进展[J]. 化工进展, 2023, 42(3): 1562-1571. |
[4] | 杨娟娟, 何林, 贺常晴, 李鑫钢, 隋红. 含油污泥多相复合调质降黏破乳分离过程[J]. 化工进展, 2023, 42(2): 614-623. |
[5] | 段一航, 高宁博, 全翠. 水热处理对含油污泥热解特性及动力学影响[J]. 化工进展, 2023, 42(2): 603-613. |
[6] | 付佳, 谌伦建, 徐冰, 华绍烽, 李从强, 杨明坤, 邢宝林, 仪桂云. 模拟煤炭气化废水中苯酚的微生物降解[J]. 化工进展, 2023, 42(1): 526-537. |
[7] | 刘雅娟. 浸没式PAC-AMBRs系统中PAC缓解膜污染的研究进展[J]. 化工进展, 2023, 42(1): 457-468. |
[8] | 岳瑶, 蒲梦凡, 王文瑞, 赵俭波, 曹辉. 聚天冬氨酸凝胶的制备及生物降解性[J]. 化工进展, 2022, 41(8): 4491-4497. |
[9] | 蒋华义, 胡娟, 齐红媛, 游琰真, 王玉龙, 武哲. 磁性纳米粒子类型和质量浓度对微波热解含油污泥的影响[J]. 化工进展, 2022, 41(7): 3908-3914. |
[10] | 王宇晶, 张楠, 刘涉江, 苗辰, 刘秀丽. 热化学清洗含油污泥的效果评价及机理[J]. 化工进展, 2022, 41(6): 3333-3340. |
[11] | 吕莹, 胡学武, 陈素素, 刘兴宇, 陈勃伟, 张明江. 多环芳烃污染土壤的微生物修复技术研究进展[J]. 化工进展, 2022, 41(6): 3249-3262. |
[12] | 樊相汝, 羊依金, 郭旭晶, 张全碧. 软锰矿-含油污泥基活性炭对亚甲基蓝的吸附特性[J]. 化工进展, 2022, 41(12): 6664-6671. |
[13] | 贾文龙, 宋硕硕, 李长俊, 吴瑕, 杨帆, 张员瑞. 超临界CO2萃取含油污泥研究现状与进展[J]. 化工进展, 2022, 41(12): 6573-6585. |
[14] | 汪润民, 张晓东, 徐成华, 于丹丹, 余冉. 高效重质石油降解菌群构建及降解性能评价[J]. 化工进展, 2022, 41(10): 5653-5660. |
[15] | 郑发, 李浩文, 林法伟, 张岩, 吴越强, 陈钊, 马文臣, 陈冠益. 大庆罐底油泥热解特性及污染物释放特性[J]. 化工进展, 2022, 41(1): 476-484. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |