化工进展 ›› 2021, Vol. 40 ›› Issue (10): 5708-5719.DOI: 10.16085/j.issn.1000-6613.2020-2055
田坤1,2,3(), 姚丹丹2,3, 赵元添2,3, 郭丽莉1, 董元华2,3, 刘云1,2,3()
收稿日期:
2020-10-13
修回日期:
2020-12-01
出版日期:
2021-10-10
发布日期:
2021-10-25
通讯作者:
刘云
作者简介:
田坤(1996—),男,博士研究生,研究方向为环境微生物学。E-mail:基金资助:
TIAN Kun1,2,3(), YAO Dandan2,3, ZHAO Yuantian2,3, GUO Lili1, DONG Yuanhua2,3, LIU Yun1,2,3()
Received:
2020-10-13
Revised:
2020-12-01
Online:
2021-10-10
Published:
2021-10-25
Contact:
LIU Yun
摘要:
新型污染物1,4-二烷广泛分布于地表水、地下水和饮用水环境中。常规水处理手段对1,4-二烷难以奏效,因而其污染处理技术成为了关注的热点。本文主要针对1,4-二烷污染的处理方法进行了综述。首先对1,4-二烷的性质及分布特征进行了总结,比较了国内外已有的污染调查状况和控制标准,然后重点从物理、化学和生物法三个方面介绍了近年来1,4-二烷污染处理技术的最新研究进展,且分析了不同技术的作用机制、优缺点及可行性,并对不同技术的处理效率进行了归纳总结。文中特别指出了生物修复的难题,即氯代烃、重金属对微生物降解1,4-二烷的抑制作用和机理及改进修复技术,最后对今后的研究方向进行了展望。
中图分类号:
田坤, 姚丹丹, 赵元添, 郭丽莉, 董元华, 刘云. 环境中1,4-二烷污染处理技术研究进展[J]. 化工进展, 2021, 40(10): 5708-5719.
TIAN Kun, YAO Dandan, ZHAO Yuantian, GUO Lili, DONG Yuanhua, LIU Yun. Advances in 1,4-dioxane remediation methods: a review[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5708-5719.
属性 | 数值 | 结构 |
---|---|---|
分子量/g·mol-1 | 88.11 | |
密度/g·cm-3 | 1.033 | |
沸点(标准大气压下)/℃ | 101.1 | |
水溶性(25℃)/mg·L-1 | 4.31×105 | |
蒸气压(25℃)/mmHg | 38.1 | |
亨利定律常数(25℃)/atm·m3·mol-1 | 4.88×10-6 | |
正辛醇-水分配系数(lg Kow) | -0.27 | |
有机碳分配系数(lg Koc) | 1.23 | |
生物富集系数 | 0.2~0.7 |
表1 1,4-二烷的理化性质及结构
属性 | 数值 | 结构 |
---|---|---|
分子量/g·mol-1 | 88.11 | |
密度/g·cm-3 | 1.033 | |
沸点(标准大气压下)/℃ | 101.1 | |
水溶性(25℃)/mg·L-1 | 4.31×105 | |
蒸气压(25℃)/mmHg | 38.1 | |
亨利定律常数(25℃)/atm·m3·mol-1 | 4.88×10-6 | |
正辛醇-水分配系数(lg Kow) | -0.27 | |
有机碳分配系数(lg Koc) | 1.23 | |
生物富集系数 | 0.2~0.7 |
时间 | 吸附剂 | 浓度范围 | 吸附容量 | 参考文献 |
---|---|---|---|---|
2007年 | 多孔TiO2颗粒 | 20.62~1.03×105mg·L-1 | 80.27mg·g-1(正己烷溶剂中) | [ |
2013年 | 碳质吸附剂 | 0.001~100mg·L-1 | 吸附等温线拟合最大值约50mg·g-1 | [ |
2014年 | AMBERSORB? 560 | 0.002~2000mg·L-1 | 吸附等温线拟合最大值约63mg·g-1 | [ |
2018年 | 活性炭Norit 1240 | 12.5~800mg·L-1 | 37.57mg·g-1 | [ |
2019年 | 钛硅沸石TS-1 | 25~500mg·L-1 | 85.17mg·g-1 | [ |
2019年 | 沸石分子筛ZSM-5 | 1~400mg·L-1 | 分子筛Si/Al=300时,Langmuir模型拟合最大值87.32mg·g-1 | [ |
表2 不同1,4-二烷吸附剂及吸附容量
时间 | 吸附剂 | 浓度范围 | 吸附容量 | 参考文献 |
---|---|---|---|---|
2007年 | 多孔TiO2颗粒 | 20.62~1.03×105mg·L-1 | 80.27mg·g-1(正己烷溶剂中) | [ |
2013年 | 碳质吸附剂 | 0.001~100mg·L-1 | 吸附等温线拟合最大值约50mg·g-1 | [ |
2014年 | AMBERSORB? 560 | 0.002~2000mg·L-1 | 吸附等温线拟合最大值约63mg·g-1 | [ |
2018年 | 活性炭Norit 1240 | 12.5~800mg·L-1 | 37.57mg·g-1 | [ |
2019年 | 钛硅沸石TS-1 | 25~500mg·L-1 | 85.17mg·g-1 | [ |
2019年 | 沸石分子筛ZSM-5 | 1~400mg·L-1 | 分子筛Si/Al=300时,Langmuir模型拟合最大值87.32mg·g-1 | [ |
时间 | 高级氧化体系 | 活性物质 | 1,4-二烷初始浓度 | 平均降解速率① | 参考文献 |
---|---|---|---|---|---|
2006年 | 20kHz超声 | ·OH | 100mg·L-1 | 0.395mg·L-1·min-1 | [ |
2007年 | H2O2/UV体系 | ·OH | 0.36mg·L-1 | 0.5μgC·min-1 | [ |
2008年 | O3/电解工艺 | ·OH | 1.04mg·L-1 | 1.04mg·L-1·min-1 | [ |
2009年 | Fe0和紫外光类芬顿体系 | ·OH | 1~10mg·L-1 | 3.16×10-2mg·L-1·min-1 | [ |
2010年 | 硼掺杂金刚石电极阳极氧化 | ·OH | COD0为129molO2·m-3 | 约4.06molO2·m-3·h-1 | [ |
2010年 | 基于紫外线的光催化(TiO2) | ·OH | 36mg·L-1 | 12mg·L-1·min-1 | [ |
2013年 | O3/ H2O2体系 | ·OH | 150mg·L-1 | 约2.5mg·L-1·min-1 | [ |
2013年 | O3/ UV体系 | ·OH | 150mg·L-1 | 约1.25mg·L-1·min-1 | [ |
2015年 | 铁屑原位活化过硫酸盐 | ·OH、·SO | 44mg·L-1 | 0.293mg·L-1·h-1 | [ |
2015年 | 电-过氧化物工艺 | ·OH | 200mg·L-1 | 6.67mg·L-1·min-1 | [ |
2016年 | 太阳光催化(NF-TiO2及TiO2) | ·OH | 135~140mg·L-1 | 2.8mgC·cm-2 ·h-1 | [ |
2016年 | 过氧化物活化过硫酸盐 | ·OH、·SO | 3.6~3.8mg·L-1 | 0.005mg·L-1·min-1 | [ |
2016年 | Fe0非均相光芬顿 | ·OH | 248mg·L-1 | 11.025mgO2· L-1·min-1 | [ |
2016年 | 电芬顿法(阴极为活性炭) | ·OH、·SO | 40~100mg·L-1 | 0.28mg·L-1·min-1 | [ |
2016年 | 声活化过硫酸盐法 | ·OH、·SO | 1mg·L-1 | 0.003mg·L-1·min-1 | [ |
2017年 | 生物炭负载纳米Fe3O4活化过硫酸盐 | ·OH、·SO | 1.76mg·L-1 | 0.014mg·L-1·min-1 | [ |
2017年 | Fe0活化过硫酸盐 | ·OH、·SO | 500mg·L-1 | 4.17mg·L-1·min-1 | [ |
2017年 | Pd/Al2O3活化过硫酸盐 | ·OH、·SO | 48mg·L-1 | 0.81mg·L-1·min-1 | [ |
2018年 | 声活化过硫酸盐 | ·OH、·SO | 13mg·L-1 | 0.023mg·L-1·min-1 | [ |
2018年 | 纳米零价铁与常用氧化剂耦合 | ·OH、·SO | 44mg·L-1 | 0.0099g·mg-1·min-1 | [ |
2018年 | 紫外/电氯化 | ·OH、·Cl、·Cl | 88.11mg·L-1 | 约1.47mg·L-1·min-1 | [ |
2019年 | 生物炭活化过氧硫酸盐 | ·OH、·SO | 1.76mg·L-1 | 0.006mg·L-1·min-1 | [ |
2020年 | 液相等离子体增强光催化 | ·OH | 10~20mg·L-1 | 0.27mg·L-1·min-1 | [ |
表3 高级氧化法在处理1,4-二烷污染中的应用
时间 | 高级氧化体系 | 活性物质 | 1,4-二烷初始浓度 | 平均降解速率① | 参考文献 |
---|---|---|---|---|---|
2006年 | 20kHz超声 | ·OH | 100mg·L-1 | 0.395mg·L-1·min-1 | [ |
2007年 | H2O2/UV体系 | ·OH | 0.36mg·L-1 | 0.5μgC·min-1 | [ |
2008年 | O3/电解工艺 | ·OH | 1.04mg·L-1 | 1.04mg·L-1·min-1 | [ |
2009年 | Fe0和紫外光类芬顿体系 | ·OH | 1~10mg·L-1 | 3.16×10-2mg·L-1·min-1 | [ |
2010年 | 硼掺杂金刚石电极阳极氧化 | ·OH | COD0为129molO2·m-3 | 约4.06molO2·m-3·h-1 | [ |
2010年 | 基于紫外线的光催化(TiO2) | ·OH | 36mg·L-1 | 12mg·L-1·min-1 | [ |
2013年 | O3/ H2O2体系 | ·OH | 150mg·L-1 | 约2.5mg·L-1·min-1 | [ |
2013年 | O3/ UV体系 | ·OH | 150mg·L-1 | 约1.25mg·L-1·min-1 | [ |
2015年 | 铁屑原位活化过硫酸盐 | ·OH、·SO | 44mg·L-1 | 0.293mg·L-1·h-1 | [ |
2015年 | 电-过氧化物工艺 | ·OH | 200mg·L-1 | 6.67mg·L-1·min-1 | [ |
2016年 | 太阳光催化(NF-TiO2及TiO2) | ·OH | 135~140mg·L-1 | 2.8mgC·cm-2 ·h-1 | [ |
2016年 | 过氧化物活化过硫酸盐 | ·OH、·SO | 3.6~3.8mg·L-1 | 0.005mg·L-1·min-1 | [ |
2016年 | Fe0非均相光芬顿 | ·OH | 248mg·L-1 | 11.025mgO2· L-1·min-1 | [ |
2016年 | 电芬顿法(阴极为活性炭) | ·OH、·SO | 40~100mg·L-1 | 0.28mg·L-1·min-1 | [ |
2016年 | 声活化过硫酸盐法 | ·OH、·SO | 1mg·L-1 | 0.003mg·L-1·min-1 | [ |
2017年 | 生物炭负载纳米Fe3O4活化过硫酸盐 | ·OH、·SO | 1.76mg·L-1 | 0.014mg·L-1·min-1 | [ |
2017年 | Fe0活化过硫酸盐 | ·OH、·SO | 500mg·L-1 | 4.17mg·L-1·min-1 | [ |
2017年 | Pd/Al2O3活化过硫酸盐 | ·OH、·SO | 48mg·L-1 | 0.81mg·L-1·min-1 | [ |
2018年 | 声活化过硫酸盐 | ·OH、·SO | 13mg·L-1 | 0.023mg·L-1·min-1 | [ |
2018年 | 纳米零价铁与常用氧化剂耦合 | ·OH、·SO | 44mg·L-1 | 0.0099g·mg-1·min-1 | [ |
2018年 | 紫外/电氯化 | ·OH、·Cl、·Cl | 88.11mg·L-1 | 约1.47mg·L-1·min-1 | [ |
2019年 | 生物炭活化过氧硫酸盐 | ·OH、·SO | 1.76mg·L-1 | 0.006mg·L-1·min-1 | [ |
2020年 | 液相等离子体增强光催化 | ·OH | 10~20mg·L-1 | 0.27mg·L-1·min-1 | [ |
时间 | 植物种类 | 1,4-二烷初始浓度 | 去除率 | 参考文献 |
---|---|---|---|---|
2000年 | 杂交杨树 | 23mg·L-1 | 9天,去除54%±19% | [ |
2001年 | 杨树(降解菌CB1190强化) | 100mg·L-1 | 45天,完全去除 | [ |
2013年 | 针叶树 | 2.5mg·L-1 | 30天,去除约80% | [ |
2020年 | 杨树(降解菌PH-06强化) | 10mg·L-1 | 13天,完全去除 | [ |
2020年 | 浮萍植物L. gibba | 16mg·L-1·d-1 | 6天,去除54%±2.5% | [ |
表4 植物修复在处理1,4-二烷污染中的应用
时间 | 植物种类 | 1,4-二烷初始浓度 | 去除率 | 参考文献 |
---|---|---|---|---|
2000年 | 杂交杨树 | 23mg·L-1 | 9天,去除54%±19% | [ |
2001年 | 杨树(降解菌CB1190强化) | 100mg·L-1 | 45天,完全去除 | [ |
2013年 | 针叶树 | 2.5mg·L-1 | 30天,去除约80% | [ |
2020年 | 杨树(降解菌PH-06强化) | 10mg·L-1 | 13天,完全去除 | [ |
2020年 | 浮萍植物L. gibba | 16mg·L-1·d-1 | 6天,去除54%±2.5% | [ |
时间 | 菌种 | 生物降解速率 | 代谢途径 | 参考文献 |
---|---|---|---|---|
1994年 | Actinomycete CB1190 | 0.33mg·min-1·mg-protein-1 | 代谢 | [ |
2001年 | Amycolata sp. CB1190 | 10mg·kg-soil-1 | 代谢 | [ |
2005年 | Cordyceps sinensis | 0.011mol·d-1 | 代谢 | [ |
2006年 | Pseudonocardia dioxanivorans CB1190 | (0.19±0.007)mg·h-1·mg-protein-1 | 代谢 | [ |
2006年 | Pseudonocardia benzenivorans B5 | (0.01±0.003)mg·h-1·mg-protein-1 | 代谢 | [ |
2006年 | Pseudonocardia K1 | (0.26±0.013)mg·h-1·mg-protein-1 | 共代谢 | [ |
2006年 | Burkholderia cepacia G4 | (0.1±0.006)mg·h-1·mg-protein-1 | 共代谢 | [ |
2006年 | Pseudomonas mendocina KR1 | (0.37±0.04)mg·h-1·mg-protein-1 | 共代谢 | [ |
2006年 | Mycobacterium austroafricanum JOB5 | (0.40±0.06)mg·h-1·mg-protein-1 | 共代谢 | [ |
2008年 | Mycobacterium sp. PH-06 | 60mg·L-1·d-1 | 代谢 | [ |
2009年 | Graphium sp. (ATCC 58400) | (9±5)nmol·min-1·mg-1 dry weight | 共代谢 | [ |
2012年 | Pseudonocardia sp. strain ENV478 | 21mg·h-1·g-TSS-1 | 共代谢 | [ |
2013年 | Gram-negative Afipia sp.D1 | 0.052~0.263mg·mg-protein-1·h-1 | 代谢 | [ |
2014年 | Acinetobacter baumannii.DD1 | 2.38mg·h-1·L-1 | 代谢 | [ |
2015年 | Rhodococcus ruber ENV425 | 10mg·h-1·g-TSS-1 | 共代谢 | [ |
2015年 | Rhodanobacter AYS5 | 3.96mg·h-1·L-1 | 代谢/共代谢 | [ |
2016年 | Xanthobacter flavus DT8 | 与CB1190相近 | 代谢 | [ |
2016年 | Pseudonocardia carboxydivorans. RM-31 | 31.6mg·L-1·h-1 | 代谢 | [ |
2018年 | Rhodococcus aetherivorans JCM 14343 | 0.0073mg-dioxane·mg-protein-1·h-1 | 代谢/共代谢 | [ |
2020年 | Consortium N112 | 1.67mg·h-1·L-1 | 代谢 | [ |
表5 降解1,4-二烷的菌种及降解速率
时间 | 菌种 | 生物降解速率 | 代谢途径 | 参考文献 |
---|---|---|---|---|
1994年 | Actinomycete CB1190 | 0.33mg·min-1·mg-protein-1 | 代谢 | [ |
2001年 | Amycolata sp. CB1190 | 10mg·kg-soil-1 | 代谢 | [ |
2005年 | Cordyceps sinensis | 0.011mol·d-1 | 代谢 | [ |
2006年 | Pseudonocardia dioxanivorans CB1190 | (0.19±0.007)mg·h-1·mg-protein-1 | 代谢 | [ |
2006年 | Pseudonocardia benzenivorans B5 | (0.01±0.003)mg·h-1·mg-protein-1 | 代谢 | [ |
2006年 | Pseudonocardia K1 | (0.26±0.013)mg·h-1·mg-protein-1 | 共代谢 | [ |
2006年 | Burkholderia cepacia G4 | (0.1±0.006)mg·h-1·mg-protein-1 | 共代谢 | [ |
2006年 | Pseudomonas mendocina KR1 | (0.37±0.04)mg·h-1·mg-protein-1 | 共代谢 | [ |
2006年 | Mycobacterium austroafricanum JOB5 | (0.40±0.06)mg·h-1·mg-protein-1 | 共代谢 | [ |
2008年 | Mycobacterium sp. PH-06 | 60mg·L-1·d-1 | 代谢 | [ |
2009年 | Graphium sp. (ATCC 58400) | (9±5)nmol·min-1·mg-1 dry weight | 共代谢 | [ |
2012年 | Pseudonocardia sp. strain ENV478 | 21mg·h-1·g-TSS-1 | 共代谢 | [ |
2013年 | Gram-negative Afipia sp.D1 | 0.052~0.263mg·mg-protein-1·h-1 | 代谢 | [ |
2014年 | Acinetobacter baumannii.DD1 | 2.38mg·h-1·L-1 | 代谢 | [ |
2015年 | Rhodococcus ruber ENV425 | 10mg·h-1·g-TSS-1 | 共代谢 | [ |
2015年 | Rhodanobacter AYS5 | 3.96mg·h-1·L-1 | 代谢/共代谢 | [ |
2016年 | Xanthobacter flavus DT8 | 与CB1190相近 | 代谢 | [ |
2016年 | Pseudonocardia carboxydivorans. RM-31 | 31.6mg·L-1·h-1 | 代谢 | [ |
2018年 | Rhodococcus aetherivorans JCM 14343 | 0.0073mg-dioxane·mg-protein-1·h-1 | 代谢/共代谢 | [ |
2020年 | Consortium N112 | 1.67mg·h-1·L-1 | 代谢 | [ |
1 | ANDERSON R H, ANDERSON J K, BOWER P A. Co-occurrence of 1,4-dioxane with trichloroethylene in chlorinated solvent groundwater plumes at US air force installations: fact or fiction[J]. Integr. Environ. Assess. Manag., 2012, 8(4): 731-737. |
2 | MOHR T K, STICKNEY J A, DIGUISEPPI W H. Environmental investigation and remediation: 1,4-dioxane and other solvent stabilizers[M]. Los Angeles: CRC Press, 2010. |
3 | USEPA. Integrated risk information system (IRIS) on 1,4-dioxane[R]. National Center for Environmental Assessment, Office of Research and Development, Washington D C, 2013. |
4 | ZENKER M J, BORDEN R C, BARLAZ M A. Occurrence and treatment of 1,4-dioxane in aqueous environments[J]. Environmental Engineering Science, 2003, 20(5): 423-432. |
5 | International Agency for Research on Cancer. Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide[C]//IARC. Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans. Lyon, 1999: 247. |
6 | STEPIEN D K, DIEHL P, HELM J, et al. Fate of 1,4-dioxane in the aquatic environment: from sewage to drinking water[J]. Water Research, 2014, 48: 406-419. |
7 | HOWARD P. Handbook of environmental fate and exposure data: for organic chemicals, volume Ⅲ pesticides[M]. Florida: Routledge & CRC Press, 1991: 216-221. |
8 | ADAMSON D T, PIÑA E A, CARTWRIGHT A E, et al. 1,4-Dioxane drinking water occurrence data from the third unregulated contaminant monitoring rule[J]. Science of the Total Environment, 2017, 596/597: 236-245. |
9 | ADAMSON D T, MAHENDRA S, WALKER K L, et al. A multisite survey to identify the scale of the 1,4-dioxane problem at contaminated groundwater sites[J]. Environmental Science & Technology Letters, 2014, 1(5): 254-258. |
10 | KARGES U, BECKER J, PÜTTMANN W. 1,4-Dioxane pollution at contaminated groundwater sites in western Germany and its distribution within a TCE plume[J]. Science of the Total Environment, 2018, 619/620: 712-720. |
11 | KARGES U, OTT D, DE BOER S, et al. 1,4-Dioxane contamination of German drinking water obtained by managed aquifer recharge systems: distribution and main influencing factors[J]. The Science of the Total Environment, 2020, 711: 134783. |
12 | KWAK Jin Il, Sun-Hwa NAM, AN Youn-Joo. Water quality standards for the protection of human health and aquatic ecosystems in Korea: current state and future perspective[J]. Environmental Science and Pollution Research, 2018, 25(4): 3108-3119. |
13 | AN Y-J, KWAK J, S-H NAM, et al. Development and implementation of surface water quality standards for protection of human health in Korea[J]. Environmental Science and Pollution Research, 2014, 21(1): 77-85. |
14 | TANABE A, TSUCHIDA Y, IBARAKI T, et al. Impact of 1,4-dioxane from domestic effluent on the Agano and Shinano Rivers, Japan[J]. Bulletin of Environmental Contamination and Toxicology, 2006, 76(1): 44-51. |
15 | POLLITT K J G, KIM Jae-Hong, PECCIA J, et al. 1,4-Dioxane as an emerging water contaminant: state of the science and evaluation of research needs[J]. Science of the Total Environment, 2019, 690: 853-866. |
16 | LIN Wan-Ting, CHEN Wun-Ling, CHENG Wei-Chih, et al. Determining the residual characteristics of alkylphenols, arsenic, and lead as well as assessing the exposures of 1,4-dioxane from household food detergents[J]. Journal of AOAC International, 2017, 100(4): 1086-1093. |
17 | KINGSTON J L T, DAHLEN P R, JOHNSON P C. State-of-the-practice review of in situ thermal technologies[J]. Groundwater Monitoring & Remediation, 2010, 30(4): 64-72. |
18 | CHEN Ruihuan, LIU Cun, JOHNSON N W, et al. Removal of 1,4-dioxane by titanium silicalite-1: separation mechanisms and bioregeneration of sorption sites[J]. Chemical Engineering Journal, 2019, 371: 193-202. |
19 | KISHIMOTO N, NAKAGAWA T, ASANO M, et al. Ozonation combined with electrolysis of 1,4-dioxane using a two-compartment electrolytic flow cell with solid electrolyte[J]. Water Research, 2008, 42(1): 379-385. |
20 | YAMAZAKI S, YAMABE N, NAGANO S, et al. Adsorption and photocatalytic degradation of 1,4-dioxane on TiO2[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185(2/3): 150-155. |
21 | EBERLE D, BALL R, BOVING T B. Peroxone activated persulfate treatment of 1,4-dioxane in the presence of chlorinated solvent co-contaminants[J]. Chemosphere, 2016, 144: 728-735. |
22 | ISACOFF E G, NICKELSEN M G. Removal of 1,4-dioxane from water using carbonaceous adsorbents: US20130220935A1[S]. 2013-08-29. |
23 | WOODARD S, MOHR T, NICKELSEN M G. Synthetic media: a promising new treatment technology for 1,4‐dioxane[J]. Remediation Journal, 2014, 24(4): 27-40. |
24 | MYERS M A, JOHNSON N W, MARIN E Z, et al. Abiotic and bioaugmented granular activated carbon for the treatment of 1,4-dioxane-contaminated water[J]. Environmental Pollution, 2018, 240: 916-924. |
25 | LIU Yun, JOHNSON N W, LIU Cun, et al. Mechanisms of 1,4-dioxane biodegradation and adsorption by bio-zeolite in the presence of chlorinated solvents: experimental and molecular dynamics simulation studies[J]. Environmental Science & Technology, 2019, 53(24): 14538-14547. |
26 | CORTÉS-ARRIAGADA D. Expanding the environmental applications of metal (Al, Ti, Mn, Fe) doped graphene: adsorption and removal of 1,4-dioxane[J]. Physical Chemistry Chemical Physics, 2016, 18(47): 32281-32292. |
27 | CORTÉS-ARRIAGADA D, MIRANDA-ROJAS S, ORTEGA D E, et al. Oxidized and Si-doped graphene: emerging adsorbents for removal of dioxane[J]. Physical Chemistry Chemical Physics, 2017, 19(27): 17587-17597. |
28 | IZAKMEHRI Z, ARDJMAND M, GANJI M D, et al. Removal of dioxane pollutants from water by using Al-doped single walled carbon nanotubes[J]. RSC Advances, 2015, 5(59): 48124-48132. |
29 | RÖDER A, SKOV A, BOGUSLAVSKIY A E, et al. VUV Excited-state dynamics of cyclic ethers as a function of ring size[J]. Physical Chemistry Chemical Physics, 2020, 22(45): 26241-26254. |
30 | COLEMAN H M, VIMONSES V, LESLIE G, et al. Degradation of 1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes[J]. Journal of Hazardous Materials, 2007, 146(3): 496-501. |
31 | MIN Byoung Koun, Jung Eun HEO, YOUN Na Kyoung, et al. Tuning of the photocatalytic 1,4-dioxane degradation with surface plasmon resonance of gold nanoparticles on titania[J]. Catalysis Communications, 2009, 10(5): 712-715. |
32 | VESCOVI T, COLEMAN H M, AMAL R. The effect of pH on UV-based advanced oxidation technologies – 1,4-dioxane degradation[J]. Journal of Hazardous Materials, 2010, 182(1): 75-79. |
33 | KRUITHOF J C, KAMP P C, MARTIJN B J. UV/H2O2 Treatment: a practical solution for organic contaminant control and primary disinfection[J]. Ozone: Science & Engineering, 2007, 29(4): 273-280. |
34 | COOPER W J, CRAMER C J, MARTIN N H, et al. Free radical mechanisms for the treatment of methyl tert-butyl ether (MTBE) via advanced oxidation/reductive processes in aqueous solutions[J]. Chemical Reviews, 2009, 109(3): 1302-1345. |
35 | ZHANG Shu, GEDALANGA P B, MAHENDRA S. Advances in bioremediation of 1,4-dioxane-contaminated waters[J]. Journal of Environmental Management, 2017, 204: 765-774. |
36 | BARNDÕK H, HERMOSILLA D, HAN Changseok, et al. Degradation of 1,4-dioxane from industrial wastewater by solar photocatalysis using immobilized NF-TiO2 composite with monodisperse TiO2 nanoparticles[J]. Applied Catalysis B: Environmental, 2016, 180: 44-52. |
37 | BECKETT M A, HUA I. Elucidation of the 1,4-dioxane decomposition pathway at discrete ultrasonic frequencies[J]. Environmental Science & Technology, 2000, 34(18): 3944-3953. |
38 | BECKETT M A, HUA I. Enhanced sonochemical decomposition of 1,4-dioxane by ferrous iron[J]. Water Research, 2003, 37(10): 2372-2376. |
39 | Hyun-Seok SON, CHOI Seok-Bong, KHAN E, et al. Removal of 1,4-dioxane from water using sonication: effect of adding oxidants on the degradation kinetics[J]. Water Research, 2006, 40(4): 692-698. |
40 | CHOI Jong Young, LEE You-Jin, SHIN J, et al. Anodic oxidation of 1,4-dioxane on boron-doped diamond electrodes for wastewater treatment[J]. Journal of Hazardous Materials, 2010, 179(1): 762-768. |
41 | NAKAGAWA H, TAKAGI S, MAEKAWA J. Fered-Fenton process for the degradation of 1,4-dioxane with an activated carbon electrode: a kinetic model including active radicals[J]. Chemical Engineering Journal, 2016, 296: 398-405. |
42 | WANG Huijiao, BAKHEET B, YUAN Shi, et al. Kinetics and energy efficiency for the degradation of 1,4-dioxane by electro-peroxone process[J]. Journal of Hazardous Materials, 2015, 294: 90-98. |
43 | KISHIMOTO N, KATAYAMA Y, KATO M, et al. Technical feasibility of UV/electro-chlorine advanced oxidation process and pH response[J]. Chemical Engineering Journal, 2018, 334: 2363-2372. |
44 | ZHANG B T, ZHANG Y, TENG Y G, et al. Sulfate radical and its application in decontamination technologies[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(16): 1756-1800. |
45 | 黄智辉, 纪志永, 陈希, 等. 过硫酸盐高级氧化降解水体中有机污染物研究进展[J]. 化工进展, 2019, 38(5): 2461-2470. |
HUANG Zhihui, JI Zhiyong, CHEN Xi, et al. Degradation of organic pollutants in water by persulfate advanced oxidation[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2461-2470. | |
46 | ZHU Jiang, LI Bingzhi. Degradation kinetic and remediation effectiveness of 1,4-dioxane-contaminated groundwater by a sono-activated persulfate process[J]. Journal of Environmental Engineering, 2018, 144(10): 04018098. |
47 | Hyun-Seok SON, Jong-Kwon IM, Kyung-Duk ZOH. A Fenton-like degradation mechanism for 1,4-dioxane using zero-valent iron (Fe0) and UV light[J]. Water Research, 2009, 43(5): 1457-1463. |
48 | TAKAHASHI N, HIBINO T, TORII H, et al. Evaluation of O3/UV and O3/H2O2 as practical advanced oxidation processes for degradation of 1,4-dioxane[J]. Ozone: Science and Engineering, 2013, 35(5): 331-337. |
49 | ZHONG Hua, BRUSSEAU M L, WANG Yake, et al. In-situ activation of persulfate by iron filings and degradation of 1,4-dioxane[J]. Water Research, 2015, 83: 104-111. |
50 | BARNDÕK H, BLANCO L, HERMOSILLA D, et al. Heterogeneous photo-Fenton processes using zero valent iron microspheres for the treatment of wastewaters contaminated with 1,4-dioxane[J]. Chemical Engineering Journal, 2016, 284: 112-121. |
51 | LI Bingzhi, ZHU Jiang. Simultaneous degradation of 1,1,1-trichloroethane and solvent stabilizer 1,4-dioxane by a sono-activated persulfate process[J]. Chemical Engineering Journal, 2016, 284: 750-763. |
52 | OUYANG Da, YAN Jingchun, QIAN Linbo, et al. Degradation of 1,4-dioxane by biochar supported nano magnetite particles activating persulfate[J]. Chemosphere, 2017, 184: 609-617. |
53 | KAMBHU A, GREN M, TANG Wei, et al. Remediating 1,4-dioxane-contaminated water with slow-release persulfate and zerovalent iron[J]. Chemosphere, 2017, 175: 170-177. |
54 | FENG Yong, LEE Po-Heng, WU Deli, et al. Surface-bound sulfate radical-dominated degradation of 1,4-dioxane by alumina-supported palladium (Pd/Al2O3) catalyzed peroxymonosulfate[J]. Water Research, 2017, 120: 12-21. |
55 | KANG Yu-Gyeong, YOON Hakwon, LEE Woojin, et al. Comparative study of peroxide oxidants activated by nZVI: removal of 1,4-dioxane and arsenic(Ⅲ) in contaminated waters[J]. Chemical Engineering Journal, 2018, 334: 2511-2519. |
56 | OUYANG Da, CHEN Yun, YAN Jingchun, et al. Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1,4-dioxane: important role of biochar defect structures[J]. Chemical Engineering Journal, 2019, 370: 614-624. |
57 | PARK Young-kwon, CHUNG Kyong-Hwan, PARK In-Soo, et al. Photocatalytic degradation of 1,4-dioxane using liquid phase plasma on visible light photocatalysts[J]. Journal of Hazardous Materials, 2020, 399: 123087. |
58 | ZENKER M J, BORDEN R C, BARLAZ M A. Mineralization of 1,4-dioxane in the presence of a structural analog[J]. Biodegradation, 2000, 11(4): 239-246. |
59 | SEI K, KAKINOKI T, INOUE D, et al. Evaluation of the biodegradation potential of 1,4-dioxane in river, soil and activated sludge samples[J]. Biodegradation, 2010, 21(4): 585-591. |
60 | CHIANG S Y D, MORA R, DIGUISEPPI W H, et al. Characterizing the intrinsic bioremediation potential of 1,4-dioxane and trichloroethene using innovative environmental diagnostic tools[J]. Journal of Environmental Monitoring, 2012, 14(9): 2317-2326. |
61 | LI M Y, ORDEN E T VAN, DEVRIES D J, et al. Bench-scale biodegradation tests to assess natural attenuation potential of 1,4-dioxane at three sites in California[J]. Biodegradation, 2015, 26(1): 39-50. |
62 | FUTUGHE A E, PURCHASE D, JONES H. Phytoremediation: phytoremediation using native plants[M]. Switzerland: Springer, Cham, 2020: 285-327. |
63 | CRISTALDI A, CONTI G O, Eun Hea JHO, et al. Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review[J]. Environmental Technology & Innovation, 2017, 8: 309-326. |
64 | AITCHISON E W, KELLEY S L, ALVAREZ P J J, et al. Phytoremediation of 1,4-dioxane by hybrid poplar trees[J]. Water Environment Research, 2000, 72(3): 313-321. |
65 | KELLEY S L, AITCHISON E W, DESHPANDE M, et al. Biodegradation of 1,4-dioxane in planted and unplanted soil: effect of bioaugmentation with Amycolata sp. CB1190[J]. Water Research, 2001, 35(16): 3791-3800. |
66 | FERRO A M, KENNEDY J, LARUE J C. Phytoremediation of 1,4-dioxane-containing recovered groundwater[J]. International Journal of Phytoremediation, 2013, 15(10): 911-923. |
67 | SIMMER R, MATHIEU J, SILVA M L B DA, et al. Bioaugmenting the poplar rhizosphere to enhance treatment of 1,4-dioxane[J]. Science of the Total Environment, 2020, 744: 140823. |
68 | OSAMA R, AWAD H M, ZHA Shanshan, et al. Greenhouse gases emissions from duckweed pond system treating polyester resin wastewater containing 1,4-dioxane and heavy metals[J]. Ecotoxicology and Environmental Safety, 2020, 207: 111253. |
69 | OUYANG Ying. Phytoremediation: modeling plant uptake and contaminant transport in the soil-plant-atmosphere continuum[J]. Journal of Hydrology, 2002, 266(1): 66-82. |
70 | SORENSEN H. 1,4-Dioxane and the application of phytoremediation at North Carolina hazardous waste groundwater contaminated sites[D]. North Carolina State University, 2013. |
71 | 沈源源, 滕应, 骆永明, 等. 几种豆科、禾本科植物对多环芳烃复合污染土壤的修复[J]. 土壤, 2011, 43(2): 253-257. |
SHEN Yuanyuan, TENG Ying, LUO Yongming, et al. Remediation efficiency of several legumes and grasses in PAH-contaminated soils[J]. Soil, 2011, 43(2): 253-257. | |
72 | 陈静. 小麦草对芘-镍污染土壤的修复潜力及耐性机理研究[D]. 上海: 上海大学, 2019. |
CHEN Jing. Study on the remediation potential and tolerance mechanism of wheatgrass to pyrene-Ni contaminated soil[D]. Shanghai: Shanghai University, 2019. | |
73 | 朱灿, 刘慧刚, 顾彦, 等. 外源硒对萘胁迫下车前草生长及土壤修复能力的影响[J]. 农业环境科学学报, 2019, 38(11): 2511-2519. |
ZHU Can, LIU Huigang, GU Yan, et al. Effects of selenium on the growth and phytoremediation efficiency of Plantago asiatica L. in soil exposed to naphthalene[J]. Journal of Agro-Environment Science, 2019, 38(11): 2511-2519. | |
74 | GLICK B R. Using soil bacteria to facilitate phytoremediation[J]. Biotechnology Advances, 2010, 28(3): 367-374. |
75 | PARALES R E, ADAMUS J E, WHITE N, et al. Degradation of 1,4-dioxane by an actinomycete in pure culture[J]. Applied and Environmental Microbiology, 1994, 60(12): 4527. |
76 | MAHENDRA S, ALVAREZ-COHEN L. Pseudonocardia dioxanivorans sp. nov., a novel actinomycete that grows on 1,4-dioxane[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(2): 593-598. |
77 | NAKAMIYA K, HASHIMOTO S, ITO H, et al. Degradation of 1,4-dioxane and cyclic ethers by an isolated fungus[J]. Applied and Environmental Microbiology, 2005, 71(3): 1254. |
78 | MAHENDRA S, ALVAREZ-COHEN L. Kinetics of 1,4-dioxane biodegradation by monooxygenase-expressing bacteria[J]. Environmental Science & Technology, 2006, 40(17): 5435-5442. |
79 | KIM Young Mo, JEON Jong Rok, MURUGESAN K, et al. Biodegradation of 1,4-dioxane and transformation of related cyclic compounds by a newly isolated Mycobacterium sp. PH-06[J]. Biodegradation, 2008, 20(4): 511. |
80 | SKINNER K, CUIFFETTI L, HYMAN M. Metabolism and cometabolism of cyclic ethers by a filamentous fungus, a Graphium sp[J]. Applied and Environmental Microbiology, 2009, 75(17): 5514. |
81 | MASUDA H, MCCLAY K, STEFFAN R J, et al. Biodegradation of tetrahydrofuran and 1,4-dioxane by soluble diiron monooxygenase in Pseudonocardia sp. strain ENV478[J]. J. Mol. Microbiol. Biotechnol., 2012, 22(5): 312-316. |
82 | SEI K, MIYAGAKI K, KAKINOKI T, et al. Isolation and characterization of bacterial strains that have high ability to degrade 1,4-dioxane as a sole carbon and energy source[J]. Biodegradation, 2013, 24(5): 665-674. |
83 | HUANG Huanlin, SHEN Dongsheng, LI Na, et al. Biodegradation of 1,4-dioxane by a novel strain and its biodegradation pathway[J]. Water, Air, & Soil Pollution, 2014, 225(9): 2135. |
84 | LIPPINCOTT D, STREGER S H, SCHAEFER C E, et al. Bioaugmentation and propane biosparging for in situ biodegradation of 1,4-dioxane[J]. Groundwater Monitoring and Remediation, 2015, 35(2): 81-92. |
85 | PUGAZHENDI A, RAJESH BANU J, DHAVAMANI J, et al. Biodegradation of 1,4-dioxane by Rhodanobacter AYS5 and the role of additional substrates[J]. Annals of Microbiology, 2015, 65(4): 2201-2208. |
86 | CHEN Dongzhi, JIN Xiaojun, CHEN Jing, et al. Intermediates and substrate interaction of 1,4-dioxane degradation by the effective metabolizer Xanthobacter flavus DT8[J]. International Biodeterioration & Biodegradation, 2016, 106: 133-140. |
87 | MATSUI R, TAKAGI K, SAKAKIBARA F, et al. Identification and characterization of 1,4-dioxane-degrading microbe separated from surface seawater by the seawater-charcoal perfusion apparatus[J]. Biodegradation, 2016, 27(2): 155-163. |
88 | INOUE D, TSUNODA T, YAMAMOTO N, et al. 1,4-Dioxane degradation characteristics of Rhodococcus aetherivorans JCM 14343[J]. Biodegradation, 2018, 29(3): 301-310. |
89 | TUSHER T R, SHIMIZU T, INOUE C, et al. Enrichment and analysis of stable 1,4-dioxane-degrading microbial consortia consisting of novel dioxane-degraders[J]. Microorganisms, 2020, 8(1): 50. |
90 | SHEN Weirong, CHEN Hong, PAN Shanshan. Anaerobic biodegradation of 1,4-dioxane by sludge enriched with iron-reducing microorganisms[J]. Bioresource Technology, 2008, 99(7): 2483-2487. |
91 | RODRIGUEZ F J B. Evaluation of 1,4-dioxane biodegradation under aerobic and anaerobic conditions[D]. Clemson: Clemson University, 2016. |
92 | MAHENDRA S, PETZOLD C J, BAIDOO E E, et al. Identification of the intermediates of in vivo oxidation of 1,4-dioxane by monooxygenase-containing bacteria[J]. Environmental Science & Technology, 2007, 41(21): 7330-7336. |
93 | 金小君, 陈东之, 朱润晔, 等. Xanthobacter flavus DT8降解二烷的特性研究[J]. 环境科学, 2012, 33(5): 1657-1662. |
JIN Xiaojun, CHEN Dongzhi, ZHU Runye, et al. Characteristics of 1,4-dioxane degradation by Xanthobacter flavus DT8.[J]. Environmental Science, 2012, 33(5): 1657-1662. | |
94 | ZENKER M J, BORDEN R C, BARLAZ M A. Biodegradation of 1,4-dioxane using trickling filter[J]. Journal of Environmental Engineering, 2004, 130(9): 926-931. |
95 | SAUL M T. Bioaugmentation to remediate dioxane in groundwater: US8241500B2[P]. 2012-08-14. |
96 | Ji-Hyun NAM, VENTURA J-R S, YEOM Ick Tae, et al. Structural and kinetic characteristics of 1,4-dioxane-degrading bacterial consortia containing the Phylum TM7[J]. Journal of Microbiology and Biotechnology, 2016, 26(11): 1951-1964. |
97 | SEKAR R, DICHRISTINA T J. Microbially driven Fenton reaction for degradation of the widespread environmental contaminant 1,4-dioxane[J]. Environmental Science & Technology, 2014, 48(21): 12858-12867. |
98 | MAHENDRA S, GROSTERN A, ALVAREZ-COHEN L. The impact of chlorinated solvent co-contaminants on the biodegradation kinetics of 1,4-dioxane[J]. Chemosphere, 2013, 91(1): 88-92. |
99 | ZHANG Shu, GEDALANGA P B, MAHENDRA S. Biodegradation kinetics of 1,4-dioxane in chlorinated solvent mixtures[J]. Environmental Science & Technology, 2016, 50(17): 9599-9607. |
100 | MATTES T E, ALEXANDER A K, COLEMAN N V. Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution[J]. FEMS Microbiology Reviews, 2010, 34(4): 445-475. |
101 | PORNWONGTHONG P, MULCHANDANI A, GEDALANGA P B, et al. Transition metals and organic ligands influence biodegradation of 1,4-dioxane[J]. Applied Biochemistry and Biotechnology, 2014, 173(1): 291-306. |
102 | YAN Ni, LIU Fei, LIU Boyang, et al. Treatment of 1,4-dioxane and trichloroethene co-contamination by an activated binary persulfate-peroxide oxidation process[J]. Environmental Science and Pollution Research, 2018, 25(32): 32088-32095. |
103 | POLASKO A L, ZULLI A, GEDALANGA P B, et al. A mixed microbial community for the biodegradation of chlorinated ethenes and 1,4-dioxane[J]. Environmental Science & Technology Letters, 2019, 6(1): 49-54. |
104 | SEKAR R, TAILLEFERT M, DICHRISTINA T J. Simultaneous transformation of commingled trichloroethylene, tetrachloroethylene, and 1,4-dioxane by a microbially driven Fenton reaction in batch liquid cultures[J]. Applied and Environmental Microbiology, 2016, 82(21): 6335. |
105 | DENG Daiyong, PHAM Dung Ngoc, LI Fei, et al. Discovery of an inducible toluene monooxygenase that cooxidizes 1,4-dioxane and 1,1-dichloroethylene in propanotrophic Azoarcus sp. strain DD4[J]. Applied and Environmental Microbiology, 2020, 86(17). |
106 | JASMANN J R, GEDALANGA P B, BORCH T, et al. Synergistic treatment of mixed 1,4-dioxane and chlorinated solvent contaminations by coupling electrochemical oxidation with aerobic biodegradation[J]. Environmental Science & Technology, 2017, 51(21): 12619-12629. |
107 | MIAO Yu, JOHNSON N W, GEDALANGA P B, et al. Response and recovery of microbial communities subjected to oxidative and biological treatments of 1,4-dioxane and co-contaminants[J]. Water Research, 2019, 149: 74-85. |
108 | MIAO Yu, JOHNSON N W, PHAN Thien, et al. Monitoring, assessment, and prediction of microbial shifts in coupled catalysis and biodegradation of 1,4-dioxane and co-contaminants[J]. Water Research, 2020, 173: 115540. |
[1] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[2] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[3] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[4] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[5] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[6] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[7] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[8] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[9] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[10] | 高聪, 陈城虎, 陈修来, 刘立明. 代谢工程改造微生物合成生物基单体的进展与挑战[J]. 化工进展, 2023, 42(8): 4123-4135. |
[11] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[12] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[13] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[14] | 王知彩, 刘伟伟, 周璁, 潘春秀, 闫洪雷, 李占库, 颜井冲, 任世彪, 雷智平, 水恒福. 基于煤基腐殖酸的高效减水剂合成与性能表征[J]. 化工进展, 2023, 42(7): 3634-3642. |
[15] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |