化工进展 ›› 2021, Vol. 40 ›› Issue (10): 5720-5729.DOI: 10.16085/j.issn.1000-6613.2020-2474
海玉琰1,2(), 何灿1,2, 马瑞1,2, 熊日华1,2()
收稿日期:
2020-12-09
修回日期:
2021-01-25
出版日期:
2021-10-10
发布日期:
2021-10-25
通讯作者:
熊日华
作者简介:
海玉琰(1989—),女,博士,工程师,研究方向为膜改性与分离新技术。E-mail:基金资助:
HAI Yuyan1,2(), HE Can1,2, MA Rui1,2, XIONG Rihua1,2()
Received:
2020-12-09
Revised:
2021-01-25
Online:
2021-10-10
Published:
2021-10-25
Contact:
XIONG Rihua
摘要:
反渗透(RO)/纳滤(NF)膜元件在长期运行过程中会不可避免地发生膜污染,当产水水质无法满足应用指标时,就需要对膜元件进行更换。膜剖检分析是研究和确定膜污染最直观有效的方法,通过膜剖检分析及膜污染诊断可以为膜元件的日常维护、膜系统运行优化和膜性能修复提供有效依据。但是,目前对于膜剖检分析的实践及膜污染诊断研究还不系统、不全面。本文针对RO/NF膜剖检分析及膜污染诊断相关研究,介绍了膜元件剖检分析流程和各类膜污染分析方法,分析了实际应用中存在的问题,并根据膜剖检分析的意义和价值,重点综述了膜污染成分诊断、膜污染分布情况诊断、不同应用场景膜污染情况对比和不同膜材料的污染情况对比研究进展,以期为膜污染机制研究、膜污染预防控制和膜系统运行改善提供参考。
中图分类号:
海玉琰, 何灿, 马瑞, 熊日华. 反渗透/纳滤膜剖检分析与膜污染诊断研究进展[J]. 化工进展, 2021, 40(10): 5720-5729.
HAI Yuyan, HE Can, MA Rui, XIONG Rihua. A review on RO/NF membrane autopsy and membrane fouling diagnosis[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5720-5729.
方法类别 | 方法名称 | 外文名(简称) | 作用 |
---|---|---|---|
实验测试 | 灼烧分析实验 (又称燃烧损失法) | loss on ignition(LOI) | 根据灼烧前后重量变化,确定有机污染和无机污染占比 |
膜表面滴酸,或污染物溶酸或碱 | acid/alkali test | 定性分析碳酸盐无机污染或有机污染 | |
卤素氧化实验 | Fujiwara test | 确定污染膜表面是否被氯或其他卤素氧化 | |
结构表征 | 扫描电子显微镜 | scanning electron microscope(SEM) | 观察污染物及污染膜表面形貌结构 |
能量色散X射线光谱 | energy dispersive spectroscopy(EDS) | 分析污染物及污染膜表面元素组成及分布情况,确定无机污染元素 | |
原子力显微镜 | atomic force microscopy(AFM) | 观察污染膜表面形态,确定膜表面粗糙度和影响膜抗污染性能因素之一 | |
傅里叶变换红外光谱 | Fourier transform infrared spectroscopy(FTIR) | 确定污染物化学结构组成,确定有机污染物成分 | |
傅里叶变换衰减全反射红外光谱 | attenuated total reflection-Fourier transform infrared spectroscopy(ATR-FTIR) | 确定污染膜表面官能团和化学结构组成 | |
X射线光电子能谱 | X-ray photoelectron spectroscopy(XPS) | 分析污染物及污染膜表面的元素比例及化学官能团组成结构 | |
核磁共振 | nuclear magnetic resonance(NMR) | 表征污染物及污染膜表面化学结构组成 | |
接触角 | contact angle(CA) | 测定污染膜的亲疏水性,影响膜抗污染性能因素之一 | |
zeta电位 | zeta potential | 测定污染膜表面电荷特性,影响膜抗污染性能因素之一 | |
卢瑟福背散射分析 | Rutherford backscattering spectrometry(RBS) | 分析污染物及污染膜表面的元素和化学结构 | |
气相色谱-质谱联用分析 | gas chromatography-mass spectrometry(GC-MS) | 分析污染物的有机污染成分 | |
激光扫描共聚焦显微镜 | confocal laser scanning microscope(CLSM) | 分析污染膜表面有机污染及其分布情况 | |
焦磷酸测序分析 | pyrosequencing | 表征微生物污染物成分 | |
16S rDNA高通量测序分析 | 16S rDNA sequencing | 表征微生物群落结构 | |
水样分析 | 电感耦合等离子发射光谱/质谱 | inductively coupled plasma-optical emission spectrometry/mass spectrometry(ICP-OES/MS) | 分析水样中无机污染物阳离子成分 |
离子色谱 | ion chromatography(IC) | 分析水样中无机污染物阴离子成分 | |
三维荧光光谱 | three-dimensional excitation emission matrix fluorescence spectroscopy(3D-EEM) | 分析水样中有机污染及生物污染物成分 | |
液相色谱-有机碳联用检测仪 | liquid chromatography-organic carbon detection(LC-OCD) | 分析水样中有机污染物成分,检测无机胶体存在 | |
溶解性有机碳 | dissolved organic carbon(DOC) | 分析水样中有机物总量 |
表1 常用膜污染诊断分析方法
方法类别 | 方法名称 | 外文名(简称) | 作用 |
---|---|---|---|
实验测试 | 灼烧分析实验 (又称燃烧损失法) | loss on ignition(LOI) | 根据灼烧前后重量变化,确定有机污染和无机污染占比 |
膜表面滴酸,或污染物溶酸或碱 | acid/alkali test | 定性分析碳酸盐无机污染或有机污染 | |
卤素氧化实验 | Fujiwara test | 确定污染膜表面是否被氯或其他卤素氧化 | |
结构表征 | 扫描电子显微镜 | scanning electron microscope(SEM) | 观察污染物及污染膜表面形貌结构 |
能量色散X射线光谱 | energy dispersive spectroscopy(EDS) | 分析污染物及污染膜表面元素组成及分布情况,确定无机污染元素 | |
原子力显微镜 | atomic force microscopy(AFM) | 观察污染膜表面形态,确定膜表面粗糙度和影响膜抗污染性能因素之一 | |
傅里叶变换红外光谱 | Fourier transform infrared spectroscopy(FTIR) | 确定污染物化学结构组成,确定有机污染物成分 | |
傅里叶变换衰减全反射红外光谱 | attenuated total reflection-Fourier transform infrared spectroscopy(ATR-FTIR) | 确定污染膜表面官能团和化学结构组成 | |
X射线光电子能谱 | X-ray photoelectron spectroscopy(XPS) | 分析污染物及污染膜表面的元素比例及化学官能团组成结构 | |
核磁共振 | nuclear magnetic resonance(NMR) | 表征污染物及污染膜表面化学结构组成 | |
接触角 | contact angle(CA) | 测定污染膜的亲疏水性,影响膜抗污染性能因素之一 | |
zeta电位 | zeta potential | 测定污染膜表面电荷特性,影响膜抗污染性能因素之一 | |
卢瑟福背散射分析 | Rutherford backscattering spectrometry(RBS) | 分析污染物及污染膜表面的元素和化学结构 | |
气相色谱-质谱联用分析 | gas chromatography-mass spectrometry(GC-MS) | 分析污染物的有机污染成分 | |
激光扫描共聚焦显微镜 | confocal laser scanning microscope(CLSM) | 分析污染膜表面有机污染及其分布情况 | |
焦磷酸测序分析 | pyrosequencing | 表征微生物污染物成分 | |
16S rDNA高通量测序分析 | 16S rDNA sequencing | 表征微生物群落结构 | |
水样分析 | 电感耦合等离子发射光谱/质谱 | inductively coupled plasma-optical emission spectrometry/mass spectrometry(ICP-OES/MS) | 分析水样中无机污染物阳离子成分 |
离子色谱 | ion chromatography(IC) | 分析水样中无机污染物阴离子成分 | |
三维荧光光谱 | three-dimensional excitation emission matrix fluorescence spectroscopy(3D-EEM) | 分析水样中有机污染及生物污染物成分 | |
液相色谱-有机碳联用检测仪 | liquid chromatography-organic carbon detection(LC-OCD) | 分析水样中有机污染物成分,检测无机胶体存在 | |
溶解性有机碳 | dissolved organic carbon(DOC) | 分析水样中有机物总量 |
项目 | 元素含量 | 厚度 | |||||||
---|---|---|---|---|---|---|---|---|---|
C | O | Si | Al | Ca | Fe | S | N | ||
表面层 | |||||||||
一段 | 0.304 | 0.515 | 0.093 | 0.040 | 0.036 | 0.012 | — | — | 约440nm |
两段 | 0.526 | 0.380 | 0.013 | 0.012 | 0.043 | 0.013 | 0.013 | — | 约1140nm |
小型试验 | 0.511 | 0.335 | 0.056 | 0.018 | 0.008 | 0.022 | — | 0.050 | 约530nm |
表面层 | |||||||||
一段 | 0.438 | 0.419 | 0.065 | 0.025 | 0.041 | 0.012 | — | — | |
两段 | 0.656 | 0.300 | 0.006 | 0.005 | 0.023 | 0.010 | — | — | |
小型试验 | 0.600 | 0.350 | 0.015 | 0.005 | 0.006 | 0.024 | — | — |
表2 表面层和底层膜的RBS表征测试结果[54]
项目 | 元素含量 | 厚度 | |||||||
---|---|---|---|---|---|---|---|---|---|
C | O | Si | Al | Ca | Fe | S | N | ||
表面层 | |||||||||
一段 | 0.304 | 0.515 | 0.093 | 0.040 | 0.036 | 0.012 | — | — | 约440nm |
两段 | 0.526 | 0.380 | 0.013 | 0.012 | 0.043 | 0.013 | 0.013 | — | 约1140nm |
小型试验 | 0.511 | 0.335 | 0.056 | 0.018 | 0.008 | 0.022 | — | 0.050 | 约530nm |
表面层 | |||||||||
一段 | 0.438 | 0.419 | 0.065 | 0.025 | 0.041 | 0.012 | — | — | |
两段 | 0.656 | 0.300 | 0.006 | 0.005 | 0.023 | 0.010 | — | — | |
小型试验 | 0.600 | 0.350 | 0.015 | 0.005 | 0.006 | 0.024 | — | — |
1 | WANG Shu, HUANG Xia, ELIMELECH Menachem. Complexation between dissolved silica and alginate molecules: implications for reverse osmosis membrane fouling[J]. Journal of Membrane Science, 2020, 605: 118109. |
2 | YIN Zhonglong, WEN Tiancheng, LI Yan, et al. Pre-ozonation for the mitigation of reverse osmosis (RO) membrane fouling by biopolymer: the roles of Ca2+ and Mg2+[J]. Water Research, 2020, 171: 115437. |
3 | 杨碧野, 姚之侃, 林赛赛,等. 聚酰胺薄层复合膜性能劣化机理及表面改性策略[J]. 膜科学与技术, 2020, 40(3): 161-167. |
YANG Biye, YAO Zhikan, LIN Saisai, et al. Deterioration mechanism and modification strategie of polyamide thin film composite membranes[J]. Membrane Science and Technology, 2020, 40(3): 161-167. | |
4 | TANG C Y, CHONG T H, FANE A G. Colloidal interactions and fouling of NF and RO membranes: a review[J]. Advances in Colloid and Interface Science, 2011, 164(1/2): 126-143. |
5 | Raquel GARCÍA-PACHECO, Junkal LANDABURU-AGUIRRE, MOLINA Serena, et al. Transformation of end-of-life RO membranes into NF and UF membranes: evaluation of membrane performance[J]. Journal of Membrane Science, 2015, 495: 305-315. |
6 | MORADI Mohammad Reza, Arto PIHLAJAMÄKI, HESAMPOUR Mehrdad, et al. End-of-life RO membranes recycling: reuse as NF membranes by polyelectrolyte layer-by-layer deposition[J]. Journal of Membrane Science, 2019, 584: 300-308. |
7 | Junkal LANDABURU-AGUIRRE, Raquel GARCÍA-PACHECO, MOLINA Serena, et al. Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination[J]. Desalination, 2016, 393: 16-30. |
8 | Maxime PONTIÉ, AWAD Sary, TAZEROUT Mohand, et al. Recycling and energy recovery solutions of end-of-life reverse osmosis (RO) membrane materials: a sustainable approach[J]. Desalination, 2017, 423: 30-40. |
9 | COUTINHO DE PAULA Eduardo, CRISTINA SANTOS AMARAL Míriam. Extending the life-cycle of reverse osmosis membranes: a review[J]. Waste Management & Research, 2017, 35 (5): 456-470. |
10 | 巫寅虎, 王琦, 童心, 等. 污水再生处理反渗透系统进水膜污堵潜势评价方法及指标体系[J]. 环境工程, 2020, 38(3): 51-57, 109. |
WU Yinhu, WANG Qi, TONG Xin, et al. The evaluation methods and index system of reverse osmosis membrane fouling potential of the influent in wastewater reclamation process: a review[J]. Environmental Engineering, 2020, 38(3): 51-57, 109. | |
11 | 黄斌, 魏春海, 瞿芳术, 等. 反渗透工艺进水污染指数的研究进展[J]. 膜科学与技术, 2020, 40(2): 146-155. |
HUANG Bin, WEI Chunhai, QU Fangshu, et al. A review on feedwater fouling index for reverse osmosis process[J]. Membrane Science and Technology, 2020, 40(2): 146-155. | |
12 | WANG Yun Hong, WU Yin Hu, YU Tong, et al. Effects of chlorine disinfection on the membrane fouling potential of bacterial strains isolated from fouled reverse osmosis membranes[J]. Science of the Total Environment, 2019, 693: 133579. |
13 | YU Tong, SUN Hao, CHEN Zhuo, et al. Different bacterial species and their extracellular polymeric substances (EPSs) significantly affected reverse osmosis (RO) membrane fouling potentials in wastewater reclamation[J]. Science of the Total Environment, 2018, 644: 486-493. |
14 | VROUWENVELDER J S, KAPPELHOF J W N M, HEIJNAN S G J, et al. Tools for fouling diagnosis of NF and RO membranes and assessment of the fouling potential of feed water[J]. Desalination, 2003, 157(1/2/3): 361-365. |
15 | 刘锡文. 利用RTD方法诊断卷式RO膜污染的实验研究[J]. 电子测量技术, 2015, 38(8): 129-131, 139. |
LIU Xiwen. Experiments research for using RTD method to diagnose the spiral-wound reverse osmosis membrane fouling[J]. Electronic Measurement Technology, 2015, 38(8): 129-131, 139. | |
16 | HASSON David, DRAK Alexander, KOMLOS Chagai, et al. Detection of fouling on RO modules by residence time distribution analyses[J]. Desalination, 2007, 204(1/2/3): 132-144. |
17 | DYDO P, TUREK M, CIBA J. Laboratory RO and NF processes fouling investigation by residence time distribution curves examination[J]. Desalination, 2004, 164(1): 33-40. |
18 | YANG Qingfeng, DRAK Alexander, HASSON David, et al. RO module RTD analyses based on directly processing conductivity signals[J]. Journal of Membrane Science, 2007, 306(1/2): 355-364. |
19 | 谭玉珺, 张泽田, 吴乾元, 等. 印染废水反渗透脱盐系统运行性能及膜污堵特性[J]. 环境科学, 2018, 39(5): 2249-2255. |
TAN Yujun, ZHANG Zetian, WU Qianyuan, et al. Operating characteristics and fouling characteristics of a RO membrane system for desalination of dyeing wastewater[J]. Environmental Science, 2018, 39(5): 2249-2255. | |
20 | MOHAMED K, BOUGUECHA S, HAMROUNI B. RO membrane autopsy of Zarzis brackish water desalination plant[J]. Desalination, 2008, 220(1/2/3): 258-266. |
21 | LEE Yonggu, KIM Sangwon, SHIN Jaegwan, et al. Sequential effects of cleaning protocols on desorption of reverse osmosis membrane foulants: autopsy results from a full-scale desalination plant[J]. Desalination, 2021, 500: 114830. |
22 | BUTT F H, RAHMAN F, BADURUTHAMAL U. Characterization of foulants by autopsy of RO desalination membranes[J]. Desalination, 1997, 114 (1): 51-64. |
23 | DARTON Ted, ANNUNZIATA Ursula, VIGO PISANO Fernando DEL, et al. Membrane autopsy helps to provide solutions to operational problems[J]. Desalination, 2004, 167: 239-245. |
24 | LIU G, PATTANAYAK S, NAVANEETHAKRISHNAN P, et al. Role of membrane autopsy in enhancing reverse osmosis plant operation[J]. Water Practice and Technology, 2018, 13 (1): 106-114. |
25 | 刘丹阳, 赵尔卓, 仲丽娟, 等. 低压纳滤膜用于微污染地表水深度处理的中试研究[J]. 给水排水, 2019, 55(4): 15-23. |
LIU Danyang, ZHAO Erzhuo, ZHONG Lijuan, et al. Pilot study for the treatment of micro-polluted surface water by using a low-pressure nanofiltration membrane system[J]. Water & Wastewater Engineering, 2019, 45 (4): 15-23. | |
26 | DEMIR Ibrahim, KOYUNCU Ismail, GUCLU Serkan, et al. An autopsy of nanofiltration membrane used for landfill leachate treatment[J]. The Scientific World Journal, 2015. DOI: 10.1155/2015/850530. |
27 | 张子潇, 魏屹, 王京涛, 等. 反渗透膜元件污染分析方法的应用[J]. 水处理技术, 2018, 44(12): 129-133. |
ZHANG Zixiao, WEI Yi, WANG Jingtao, et al. Application of analytical method for RO membrane fouling[J]. Technology of Water Treatment, 2018, 44(12): 129-133. | |
28 | 褚彦杰. 反渗透膜污染分析、预测及恢复研究[D]. 北京: 北京交通大学, 2011. |
CHU Yanjie, Study on analysis, prediction and recovery of fouling of RO membrane[D]. Beijing: Beijing Jiaotong University, 2011. | |
29 | XU P, BELLONA C, DREWES J E. Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: membrane autopsy results from pilot-scale investigations[J]. Journal of Membrane Science, 2010, 353(1/2): 111-121. |
30 | BOUBAKRI A, BOUGUECHA S. Diagnostic and membrane autopsy of Djerba Island desalination station[J]. Desalination, 2008, 220(1/2/3): 403-411. |
31 | Maxime PONTIÉ, RAPENNE Sophie, THEKKEDATH Anju, et al. Tools for membrane autopsies and antifouling strategies in seawater feeds: a review[J]. Desalination, 2005, 181(1/2/3): 75-90. |
32 | ADENIYI Amos, MBAYA Richard, POPOOLA Patricia, et al. Predicting the fouling tendency of thin film composite membranes using fractal analysis and membrane autopsy[J]. Alexandria Engineering Journal, 2020, 59(6): 4397-4407. |
33 | KARMAL Ilham, MOHAREB Said, Mohamed EL-HOUSSE, et al. Structural and morphological characterization of scale deposits on the reverse osmosis membranes: case of brackish water demineralization station in Morocco[J]. Groundwater for Sustainable Development, 2020, 11: 100483. |
34 | PONTIÉ M, THEKKEDATH A, KECILI K, et al. Membrane autopsy as a sustainable management of fouling phenomena occurring in MF, UF and NF processes[J]. Desalination, 2007, 204(1/2/3): 155-169. |
35 | TRAN Thuy, BOLTO Brian, GRAY Stephen, et al. An autopsy study of a fouled reverse osmosis membrane element used in a brackish water treatment plant[J]. Water Research, 2007, 41(17): 3915-3923. |
36 | ZHAO Dongsheng, SU Chang, LIU Guicai, et al. Performance and autopsy of nanofiltration membranes at an oil-field wastewater desalination plant[J]. Environmental Science and Pollution Research, 2019, 26(3): 2681-2690. |
37 | SHAHID Muhammad Kashif, CHOI Young Gyun. The comparative study for scale inhibition on surface of RO membranes in wastewater reclamation: CO2 purging versus three different antiscalants[J]. Journal of Membrane Science, 2018, 546: 61-69. |
38 | AGNIHOTRI Bhuvneshwar, SHARMA Aditya, GUPTA Akhilendra B. Characterization and analysis of inorganic foulants in RO membranes for groundwater treatment[J]. Desalination, 2020, 491: 114567. |
39 | SHON H K, VIGNESWARAN S, ZAREIE M H, et al. Physico-chemical pretreatment to seawater reverse osmosis (SWRO): organic characterization and membrane autopsy[J]. Desalination, 2009, 236(1/2/3): 282-290. |
40 | NIKBAKHT FINI Mahdi, ZHU Junyong, BRUGGEN Bart VAN DER, et al. Preparation, characterization and scaling propensity study of a dopamine incorporated RO/FO TFC membrane for pesticide removal[J]. Journal of Membrane Science, 2020, 612: 118458. |
41 | DAVENPORT Douglas M, RITT Cody L, VERBEKE Rhea, et al. Thin film composite membrane compaction in high-pressure reverse osmosis[J]. Journal of Membrane Science, 2020, 610: 118268. |
42 | 胡德秀, 张艳, 朱玲, 等. 污泥厌氧过程中磷释放与SMP特性研究[J]. 中国环境科学, 2018, 38(8): 2974-2980. |
HU Dexiu, ZHANG Yan, ZHU Ling, et al. Characteristics of phosphorus released and soluble microbial products in anaerobic conditions of sludge[J]. China Environmental Science, 2018, 38(8): 2974-2980. | |
43 | LI Sheng, KIM Youngjin, CHEKLI Laura, et al. Impact of reverse nutrient diffusion on membrane biofouling in fertilizer-drawn forward osmosis[J]. Journal of Membrane Science, 2017, 539: 108-115. |
44 | PARK Sanghun, Taewoo NAM, PARK Jongkwan, et al. Investigating the influence of organic matter composition on biofilm volumes in reverse osmosis using optical coherence tomography[J]. Desalination, 2017, 419: 125-132. |
45 | SONG Weilong, LEE Lai Yoke, LIU Enyu, et al. Spatial variation of fouling behavior in high recovery nanofiltration for industrial reverse osmosis brine treatment towards zero liquid discharge[J]. Journal of Membrane Science, 2020, 609: 118185. |
46 | WANG Shu, XIAO Kang, HUANG Xia. Characterizing the roles of organic and inorganic foulants in RO membrane fouling development: the case of coal chemical wastewater treatment[J]. Separation and Purification Technology, 2019, 210: 1008-1016. |
47 | FORTUNATO Luca, ALSHAHRI Abdullah H, FARINHA Andreia S F, et al. Fouling investigation of a full-scale seawater reverse osmosis desalination (SWRO) plant on the Red Sea: membrane autopsy and pretreatment efficiency[J]. Desalination, 2020, 496: 114536. |
48 | JIANG Shanxue, LI Yuening, LADEWIG Bradley P. A review of reverse osmosis membrane fouling and control strategies[J]. Science of the Total Environment, 2017, 595: 567-583. |
49 | KIM Youngjin, LI Sheng, GHAFFOUR Noreddine. Evaluation of different cleaning strategies for different types of forward osmosis membrane fouling and scaling[J]. Journal of Membrane Science, 2020, 596: 117731. |
50 | MATIN Asif, LAOUI Tahar, FALATH Wail, et al. Fouling control in reverse osmosis for water desalination & reuse: current practices & emerging environment-friendly technologies[J]. Science of the Total Environment, 2021, 765: 142721. |
51 | DE LI Wen, SU Xu, PALAZZOLO Alan, et al. Reverse osmosis membrane, seawater desalination with vibration assisted reduced inorganic fouling[J]. Desalination, 2017, 417: 102-114. |
52 | SHIRAZI Saqib, LIN Che Jen, CHEN Dong. Inorganic fouling of pressure-driven membrane processes—A critical review[J]. Desalination, 2010, 250(1): 236-248. |
53 | RUIZ-GARCÍA A, MELIÁN-MARTEL N, MENA V. Fouling characterization of RO membranes after 11 years of operation in a brackish water desalination plant[J]. Desalination, 2018, 430: 180-185. |
54 | GORZALSKI Alexander S, CORONELL Orlando. Fouling of nanofiltration membranes in full- and bench-scale systems treating groundwater containing silica[J]. Journal of Membrane Science, 2014, 468: 349-359. |
55 | FARHAT Soumaya, BALI Mahmoud, KAMEL Fethi. Membrane autopsy to provide solutions to operational problems of Jerba brackish water desalination plant[J]. Desalination, 2018, 445: 225-235. |
56 | ZHENG Libing, YU Dawei, WANG Gang, et al. Characteristics and formation mechanism of membrane fouling in a full-scale RO wastewater reclamation process: membrane autopsy and fouling characterization[J]. Journal of Membrane Science, 2018, 563: 843-856. |
57 | JEONG Sanghyun, NAIDU Gayathri, VOLLPRECHT Robert, et al. In-depth analyses of organic matters in a full-scale seawater desalination plant and an autopsy of reverse osmosis membrane[J]. Separation and Purification Technology, 2016, 162: 171-179. |
58 | TANG Fang, HU Hongying, SUN Lijuan, et al. Fouling of reverse osmosis membrane for municipal wastewater reclamation: autopsy results from a full-scale plant[J]. Desalination, 2014, 349: 73-79. |
59 | 许家晟, 谢建国, 鹿燕, 等. 碟管式纳滤膜在生活用水处理中的膜污染特性[J]. 化工进展, 2020, 39(5): 2000-2008. |
XU Jiasheng, XIE Jianguo, LU Yan, et al. Membrane fouling characteristics of disk-tube nanofiltration membrane to domestic water treatment[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 2000-2008. | |
60 | XU Rui, QIN Wei, ZHANG Bing, et al. Nanofiltration in pilot scale for wastewater reclamation: long-term performance and membrane biofouling characteristics[J]. Chemical Engineering Journal, 2020, 395: 125087. |
61 | Jia Shin HO, Lee Nuang SIM, WEBSTER Richard D, et al. Monitoring fouling behavior of reverse osmosis membranes using electrical impedance spectroscopy: a field trial study[J]. Desalination, 2017, 407: 75-84. |
62 | LI Yufang, LI Mengchen, XIAO Kang, et al. Reverse osmosis membrane autopsy in coal chemical wastewater treatment: evidences of spatially heterogeneous fouling and organic-inorganic synergistic effect[J]. Journal of Cleaner Production, 2020, 246: 118964. |
63 | CHON Kangmin, CHO Jaeweon. Fouling behavior of dissolved organic matter in nanofiltration membranes from a pilot-scale drinking water treatment plant: an autopsy study[J]. Chemical Engineering Journal, 2016, 295: 268-277. |
64 | SHARMA Pinki, JOSHI Himanshu. Membrane autopsy based bio-fouling investigation of distillery spent wash RO treatment plant[J]. Environmental Technology, 2014, 35(24): 3047-3051. |
65 | KIM Sung Jo, Byung Soo OH, YU Hye Weon, et al. Foulant characterization and distribution in spiral wound reverse osmosis membranes from different pressure vessels[J]. Desalination, 2015, 370: 44-52. |
66 | NEJATI Sina, MIRBAGHERI Seyed Ahmad, WARSINGER David M, et al. Biofouling in seawater reverse osmosis (SWRO): impact of module geometry and mitigation with ultrafiltration[J]. Journal of Water Process Engineering, 2019, 29: 100782. |
67 | TONG Xin, CUI Yong, WANG Yunhong, et al. Fouling properties of reverse osmosis membranes along the feed channel in an industrial-scale system for wastewater reclamation[J]. Science of the Total Environment, 2020, 713: 136673. |
68 | Bahar OZBEY-UNAL, OMWENE Philip Isaac, YAGCIOGLU Meltem, et al. Treatment of organized industrial zone wastewater by microfiltration/reverse osmosis membrane process for water recovery: from lab to pilot scale[J]. Journal of Water Process Engineering, 2020, 38: 101646. |
69 | LEE Yong Gu, KIM Sangwon, SHIN Jaegwan, et al. Fouling behavior of marine organic matter in reverse osmosis membranes of a real-scale seawater desalination plant in South Korea[J]. Desalination, 2020, 485: 114305. |
70 | GHASEMINEZHAD Seyedeh Masumeh, BARIKANI Mehdi, SALEHIRAD Mehdi. Development of graphene oxide-cellulose acetate nanocomposite reverse osmosis membrane for seawater desalination[J]. Composites Part B: Engineering, 2019, 161: 320-327. |
71 | WANG Yunhong, WU Yinhu, TONG Xin, et al. Chlorine disinfection significantly aggravated the biofouling of reverse osmosis membrane used for municipal wastewater reclamation[J]. Water Research, 2019, 154: 246-257. |
72 | KHAN Muhammad Tariq, BUSCH Markus, MOLINA Veronica Garcia, et al. How different is the composition of the fouling layer of wastewater reuse and seawater desalination RO membranes?[J]. Water Research, 2014, 59: 271-282. |
73 | LUO Huijia, CUI Yong, ZHANG Hongyu, et al. Analyzing and verifying the association of spiral-wound reverse osmosis membrane fouling with different secondary effluents: full-scale experiments[J]. Science of the Total Environment, 2020, 711: 135150. |
74 | SACHIT D, VEENSTRA J. Foulant analysis of three RO membranes used in treating simulated brackish water of the Iraqi marshes[J]. Membranes, 2017, 7(2): 23. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[3] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[4] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[5] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[6] | 陆诗建, 刘苗苗, 杨菲, 张俊杰, 陈思铭, 刘玲, 康国俊, 李清方. 改良型CO2湿壁塔内气液两相流动规律及传质特性[J]. 化工进展, 2023, 42(7): 3457-3467. |
[7] | 冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509. |
[8] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[9] | 任重远, 何金龙, 袁清. 分子筛膜晶间缺陷控制与修复技术研究进展[J]. 化工进展, 2023, 42(5): 2454-2463. |
[10] | 王林, 辛梅华, 李明春, 陈琦, 毛扬帆. 季铵化/磺化壳聚糖的制备及其抗生物被膜活性[J]. 化工进展, 2023, 42(5): 2577-2585. |
[11] | 于捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, 2023, 42(4): 1760-1768. |
[12] | 赵珍珍, 郑喜, 王雪琪, 王涛, 冯英楠, 任永胜, 赵之平. 聚酰胺复合膜微孔支撑基底的研究进展[J]. 化工进展, 2023, 42(4): 1917-1933. |
[13] | 叶海星, 陈宇昊, 陈仪, 孙海翔, 牛青山. 镁锂分离复合纳滤膜研究进展[J]. 化工进展, 2023, 42(4): 1934-1943. |
[14] | 常晓青, 彭东来, 李东洋, 张延武, 王景, 张亚涛. MOFs基丙烯/丙烷高效分离混合基质膜研究进展[J]. 化工进展, 2023, 42(4): 1961-1973. |
[15] | 王林, 辛梅华, 李明春, 张涛, 毛扬帆. 烷基季铵化壳聚糖的制备及其抗生物被膜的活性[J]. 化工进展, 2023, 42(4): 1995-2002. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |