化工进展 ›› 2021, Vol. 40 ›› Issue (8): 4551-4561.DOI: 10.16085/j.issn.1000-6613.2020-1993
吴文瞳(), 张玲玲(), 李子富, 王晨希, 余春松, 王庆国
收稿日期:
2020-09-30
出版日期:
2021-08-05
发布日期:
2021-08-12
通讯作者:
张玲玲
作者简介:
吴文瞳(1996—),女,硕士研究生,研究方向为过硫酸盐高级氧化处理抗生素废水。E-mail:基金资助:
WU Wentong(), ZHANG Lingling(), LI Zifu, WANG Chenxi, YU Chunsong, WANG Qingguo
Received:
2020-09-30
Online:
2021-08-05
Published:
2021-08-12
Contact:
ZHANG Lingling
摘要:
近年来由于抗生素滥用而导致的水污染日益严重,抗生素残留及耐药性已成为当今社会面临的最严峻挑战之一。高级氧化工艺以其快速的反应速率和良好的处理效果,越来越多地被用于治理含抗生素的废水。本文首先阐述了抗生素的污染现状;其后根据起主导作用的自由基种类,分类对比了传统高级氧化和过硫酸盐高级氧化处理抗生素及耐药性的特征,深入分析了过硫酸盐高级氧化的反应机理,重点介绍了热活化、紫外活化、零价铁及其改性活化和电活化等不同活化过硫酸盐的方式,并研究总结了这些技术用于处理抗生素及其耐药性的降解效果和进展;综合分析了目前高级氧化降解抗生素及去除耐药性的环境影响因素和存在的问题;最后对高级氧化的未来发展进行了展望。
中图分类号:
吴文瞳, 张玲玲, 李子富, 王晨希, 余春松, 王庆国. 高级氧化技术降解抗生素及去除耐药性的研究进展[J]. 化工进展, 2021, 40(8): 4551-4561.
WU Wentong, ZHANG Lingling, LI Zifu, WANG Chenxi, YU Chunsong, WANG Qingguo. Research progress of advanced oxidation technology in degradation of antibiotics and removal of antibiotic resistance[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4551-4561.
国家 | 水生系统 | 抗生素 | ARB | ARGs | 文献 |
---|---|---|---|---|---|
中国 | 太湖流域地表水 | 四环素、土霉素等9种 | 耐药大肠杆菌 | blaCTX,sulⅠ,tet A,qnr S,aac-1b等39种 | [ |
中国 | 北京市区7条河流 | 磺胺类和四环素 | 河流细菌(耐药率0.512~0.971) | sul1,sul2,tetA,tetB,tetE,tetW,tetM,tetZ | [ |
西班牙 | 河流,污水处理厂 | 甲氧苄啶、氧氟沙星等11种 | — | qnrS,ermB,tetW,blaTEM,blaNDM,blaKPC,vanA | [ |
荷兰 | 62家污水处理厂 | — | 耐药革兰阳性细菌、大肠杆菌等 | ermB,sul1,sul2,tetM,tetM,qnrS,blaCTXM | [ |
日本 | 宫崎市城市河流 | 万古霉素 | 耐药肠球菌 | vanA,vanB,vanC1,vanC2/C3 | [ |
印度 | 医院废水, 河流 | — | 耐药大肠杆菌、肠球菌属、假单胞菌 | blaTEM,blaCTX-M,blaSHV,blaNDM,aadA | [ |
德国,澳大利亚 | 河流 | 四环素、氯霉素、磺酰胺等8种 | — | Ampc,vanA,tetA,aac(3)-IIa,dfrA1,ermA 等24种 | [ |
美国 | 河流 | β-内酰胺类抗生素 | 耐药革兰阴性菌 | — | [ |
法国 | 河流 | 四环素、阿莫西林等16种 | 耐药大肠杆菌 | — | [ |
表1 抗生素、ARB及ARGs在各国水体中的分布
国家 | 水生系统 | 抗生素 | ARB | ARGs | 文献 |
---|---|---|---|---|---|
中国 | 太湖流域地表水 | 四环素、土霉素等9种 | 耐药大肠杆菌 | blaCTX,sulⅠ,tet A,qnr S,aac-1b等39种 | [ |
中国 | 北京市区7条河流 | 磺胺类和四环素 | 河流细菌(耐药率0.512~0.971) | sul1,sul2,tetA,tetB,tetE,tetW,tetM,tetZ | [ |
西班牙 | 河流,污水处理厂 | 甲氧苄啶、氧氟沙星等11种 | — | qnrS,ermB,tetW,blaTEM,blaNDM,blaKPC,vanA | [ |
荷兰 | 62家污水处理厂 | — | 耐药革兰阳性细菌、大肠杆菌等 | ermB,sul1,sul2,tetM,tetM,qnrS,blaCTXM | [ |
日本 | 宫崎市城市河流 | 万古霉素 | 耐药肠球菌 | vanA,vanB,vanC1,vanC2/C3 | [ |
印度 | 医院废水, 河流 | — | 耐药大肠杆菌、肠球菌属、假单胞菌 | blaTEM,blaCTX-M,blaSHV,blaNDM,aadA | [ |
德国,澳大利亚 | 河流 | 四环素、氯霉素、磺酰胺等8种 | — | Ampc,vanA,tetA,aac(3)-IIa,dfrA1,ermA 等24种 | [ |
美国 | 河流 | β-内酰胺类抗生素 | 耐药革兰阴性菌 | — | [ |
法国 | 河流 | 四环素、阿莫西林等16种 | 耐药大肠杆菌 | — | [ |
自由基 | 半衰期/μs | 氧化电位/V | pH适用范围 |
---|---|---|---|
SO | 30~40 | 2.50~3.10 | 2~10 |
·OH | 10-3 | 2.80 | 2~9 |
表2 SO4-·与·OH的化学性质
自由基 | 半衰期/μs | 氧化电位/V | pH适用范围 |
---|---|---|---|
SO | 30~40 | 2.50~3.10 | 2~10 |
·OH | 10-3 | 2.80 | 2~9 |
改性方式 | 改性材料 | 抗生素 | 降解率 | 主要自由基 | 文献 |
---|---|---|---|---|---|
纳米改性 | 纳米Fe0 | 磺胺甲唑 | 87.6% | ·OH(pH>8.5) | [ |
纳米Fe0 | 磺胺嘧啶 | 93% | — | [ | |
双金属体系 | Fe0/Ag | 左氧氟沙星 氯霉素 | 60% 91% | SO | [ |
纳米Fe0/Cu | 盐酸四环素 | 89% | SO | [ | |
预处理 | 超声 | 磺胺嘧啶 | 95.7% | SO | [ |
预磁化 | 磺胺嘧啶 | 49.3% | SO | [ | |
水热 | 氯霉素 | 70.89% | — | [ | |
材料负载 | 介孔炭负载纳米Fe0 | 四环素 | 92.1% | SO | [ |
生物炭负载Fe0/Ni | 诺氟沙星 | 90%以上 | SO | [ | |
硫化改性 | 硫化纳米Fe0 | 磺胺嘧啶 | 100% | — | [ |
硫化纳米Fe0/生物炭 | 环丙沙星 | 99.01%±0.15% | SO | [ |
表3 改性Fe0对过硫酸盐的氧化
改性方式 | 改性材料 | 抗生素 | 降解率 | 主要自由基 | 文献 |
---|---|---|---|---|---|
纳米改性 | 纳米Fe0 | 磺胺甲唑 | 87.6% | ·OH(pH>8.5) | [ |
纳米Fe0 | 磺胺嘧啶 | 93% | — | [ | |
双金属体系 | Fe0/Ag | 左氧氟沙星 氯霉素 | 60% 91% | SO | [ |
纳米Fe0/Cu | 盐酸四环素 | 89% | SO | [ | |
预处理 | 超声 | 磺胺嘧啶 | 95.7% | SO | [ |
预磁化 | 磺胺嘧啶 | 49.3% | SO | [ | |
水热 | 氯霉素 | 70.89% | — | [ | |
材料负载 | 介孔炭负载纳米Fe0 | 四环素 | 92.1% | SO | [ |
生物炭负载Fe0/Ni | 诺氟沙星 | 90%以上 | SO | [ | |
硫化改性 | 硫化纳米Fe0 | 磺胺嘧啶 | 100% | — | [ |
硫化纳米Fe0/生物炭 | 环丙沙星 | 99.01%±0.15% | SO | [ |
不同离子 | 降解率 | 参考文献 |
---|---|---|
Cl- | 降解速率下降 | [ |
0.03mol/L Cl-使降解速率略有提高,浓度的进一步增加使降解率下降 | [ | |
Br- | 降解速率下降 | [ |
无显著影响 | [ | |
NO | 降解速率下降 | [ |
较弱抑制作用 | [ | |
HCO | 降解速率下降 | [ |
降解速率上升 | [ | |
无显著影响 | [ | |
SO | 降解速率下降 | [ |
降解率上升 | [ |
表4 不同阴离子对降解抗生素废水的影响
不同离子 | 降解率 | 参考文献 |
---|---|---|
Cl- | 降解速率下降 | [ |
0.03mol/L Cl-使降解速率略有提高,浓度的进一步增加使降解率下降 | [ | |
Br- | 降解速率下降 | [ |
无显著影响 | [ | |
NO | 降解速率下降 | [ |
较弱抑制作用 | [ | |
HCO | 降解速率下降 | [ |
降解速率上升 | [ | |
无显著影响 | [ | |
SO | 降解速率下降 | [ |
降解率上升 | [ |
1 | KLEIN E Y, BOECKEL T P VAN, MARTINEZ E M, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(15): E3463-E3470. |
2 | DU L F, LIU W K. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review[J]. Agronomy for Sustainable Development, 2012, 32(2): 309-327. |
3 | ZHANG S H, LYU X, HAN B, et al. Prevalence of antibiotic resistance genes in antibiotic-resistant Escherichia coli isolates in surface water of Taihu Lake Basin, China[J]. Environmental Science and Pollution Research, 2015, 22(15): 11412-11421. |
4 | XU Y, GUO C S, LUO Y, et al. Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing, China[J]. Environmental Pollution, 2016, 213: 833-840. |
5 | LEKUNBERRI I, VILLAGRASA M, BALCÁZAR J L, et al. Contribution of bacteriophage and plasmid DNA to the mobilization of antibiotic resistance genes in a river receiving treated wastewater discharges[J]. Science of the Total Environment, 2017, 601/602: 206-209. |
6 | PALLARES-VEGA R, BLAAK H, PLAATS R VAN DER, et al. Determinants of presence and removal of antibiotic resistance genes during WWTP treatment: a cross-sectional study[J]. Water Research, 2019, 161: 319-328. |
7 | NISHIYAMA M, OGURA Y, HAYASHI T, et al. Antibiotic resistance profiling and genotyping of vancomycin-resistant enterococci collected from an urban river basin in the provincial city of Miyazaki, Japan[J]. Water, 2017, 9(2): 79. |
8 | DEVARAJAN N, LAFFITE A, MULAJI C K, et al. Occurrence of antibiotic resistance genes and bacterial markers in a tropical river receiving hospital and urban wastewaters[J]. PLoS One, 2016, 11(2): e0149211. |
9 | STOLL C, SIDHU J P S, TIEHM A, et al. Prevalence of clinically relevant antibiotic resistance genes in surface water samples collected from Germany and Australia[J]. Environmental Science & Technology, 2012, 46(17): 9716-9726. |
10 | ASH R J, MAUCK B, MORGAN M. Antibiotic resistance of gram-negative bacteria in rivers, United States[J]. Emerging Infectious Diseases, 2002, 8(7): 713-716. |
11 | LAROCHE E, PAWLAK B, BERTHE T, et al. Occurrence of antibiotic resistance and class 1, 2 and 3 integrons in Escherichia coli isolated from a densely populated estuary (Seine, France)[J]. FEMS Microbiology Ecology, 2009, 68(1): 118-130. |
12 | FATTA-KASSINOS D, VASQUEZ M I, KÜMMERER K. Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes—Degradation, elucidation of byproducts and assessment of their biological potency[J]. Chemosphere, 2011, 85(5): 693-709. |
13 | 符荷花, 陈猛, 熊小京. 抗生素的高级氧化降解工艺与机理研究进展[J]. 绿色科技, 2014(10): 165-168. |
FU Hehua, CHEN Meng, XIONG Xiaojing. A research progress of antibiotic’s advanced oxidation degradation process and mechanism[J]. Journal of Green Science and Technology, 2014(10): 165-168. | |
14 | PIGEOT-RÉMY S, SIMONET F, ATLAN D, et al. Bactericidal efficiency and mode of action: a comparative study of photochemistry and photocatalysis[J]. Water Research, 2012, 46(10): 3208-3218. |
15 | DIAO H F, LI X Y, GU J D, et al. Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and Fenton reaction[J]. Process Biochemistry, 2004, 39(11): 1421-1426. |
16 | SHIMIZU E, TOKUYAMA Y, OKUTSU N, et al. Attacking mechanism of hydroxyl radical to DNA base-pair: density functional study in vacuum and in water[J]. Journal of Biomolecular Structure & Dynamics, 2015, 33(1): 158-166. |
17 | ELMOLLA E, CHAUDHURI M. Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution[J]. Journal of Hazardous Materials, 2009, 170(2/3): 666-672. |
18 | GUO R, XIE X, CHEN J. The degradation of antibiotic amoxicillin in the Fenton-activated sludge combined system[J]. Environmental Technology, 2015, 36(5/6/7/8): 844-851. |
19 | BASTURK E, KARATAS M. Advanced oxidation of Reactive Blue 181 solution: a comparison between Fenton and Sono-Fenton Process[J]. Ultrasonics Sonochemistry, 2014, 21(5): 1881-1885. |
20 | IOANNOU-TTOFA L, RAJ S, PRAKASH H, et al. Solar photo-Fenton oxidation for the removal of ampicillin, total cultivable and resistant E. coli and ecotoxicity from secondary-treated wastewater effluents[J]. Chemical Engineering Journal, 2019, 355: 91-102. |
21 | FERRO G, FIORENTINO A, ALFEREZ M C, et al. Urban wastewater disinfection for agricultural reuse: effect of solar driven AOPs in the inactivation of a multidrug resistant E. coli strain[J]. Applied Catalysis B: Environmental, 2015, 178: 65-73. |
22 | MACKUĽAK T, NAGYOVÁ K, FABEROVÁ M, et al. Utilization of Fenton-like reaction for antibiotics and resistant bacteria elimination in different parts of WWTP[J]. Environmental Toxicology and Pharmacology, 2015, 40(2): 492-497. |
23 | KARAOLIA P, MICHAEL-KORDATOU I, HAPESHI E, et al. Investigation of the potential of a membrane bioreactor followed by solar Fenton oxidation to remove antibiotic-related microcontaminants[J]. Chemical Engineering Journal, 2017, 310: 491-502. |
24 | FIORENTINO A, ESTEBAN B, GARRIDO-CARDENAS J A, et al. Effect of solar photo-Fenton process in raceway pond reactors at neutral pH on antibiotic resistance determinants in secondary treated urban wastewater[J]. Journal of Hazardous Materials, 2019, 378: 120737. |
25 | 鲁金凤, 王斌, 廖洋, 等. 水环境中残留抗生素的消毒副产物问题最新研究进展[J]. 中国给水排水, 2020, 36(4): 6-12. |
LU Jinfeng, WANG Bin, LIAO Yang, et al. Latest research progress on the disinfection by-products of residual antibiotics in water environment[J]. China Water & Wastewater, 2020, 36(4): 6-12. | |
26 | PI Y H, LI X Y, XIA Q B, et al. Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal-organic frameworks (MOFs)[J]. Chemical Engineering Journal, 2018, 337: 351-371. |
27 | SHANIBA C, AKBAR M, RAMSEENA K, et al. Sunlight-assisted oxidative degradation of cefixime antibiotic from aqueous medium using TiO2/nitrogen doped holey graphene nanocomposite as a high performance photocatalyst[J]. Journal of Environmental Chemical Engineering, 2020, 8(1): 102204. |
28 | CABRERA-REINA A, MARTÍNEZ-PIERNAS A B, BERTAKIS Y, et al. TiO2 photocatalysis under natural solar radiation for the degradation of the carbapenem antibiotics imipenem and meropenem in aqueous solutions at pilot plant scale[J]. Water Research, 2019, 166: 115037. |
29 | MAJUMDAR A, PAL A. Recent advancements in visible-light-assisted photocatalytic removal of aqueous pharmaceutical pollutants[J]. Clean Technologies and Environmental Policy, 2020, 22(1): 11-42. |
30 | XIE Y J, ZHANG X, MA P J, et al. Hierarchical TiO2 photocatalysts with a one-dimensional heterojunction for improved photocatalytic activities[J]. Nano Research, 2015, 8(6): 2092-2101. |
31 | HU X, HU X J, PENG Q Q, et al. Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2[J]. Chemical Engineering Journal, 2020, 380: 122366. |
32 | CAO B C, CAO S, DONG P Y, et al. High antibacterial activity of ultrafine TiO2/graphene sheets nanocomposites under visible light irradiation[J]. Materials Letters, 2013, 93: 349-352. |
33 | CHEN H S, HUANG M H, WANG Z W, et al. Enhancing rejection performance of tetracycline resistance genes by a TiO2/AgNPs-modified nanofiber forward osmosis membrane[J]. Chemical Engineering Journal, 2020, 382: 123052. |
34 | KARAOLIA P, MICHAEL-KORDATOU I, HAPESHI E, et al. Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters[J]. Applied Catalysis B: Environmental, 2018, 224: 810-824. |
35 | MOREIRA N F F, NARCISO-DA-ROCHA C, POLO-LÓPEZ M I, et al. Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater[J]. Water Research, 2018, 135: 195-206. |
36 | CAI Q Q, HU J Y. Effect of UVA/LED/TiO2 photocatalysis treated sulfamethoxazole and trimethoprim containing wastewater on antibiotic resistance development in sequencing batch reactors[J]. Water Research, 2018, 140: 251-260. |
37 | GARCIA-SEGURA S, OCON J D, CHONG M N. Electrochemical oxidation remediation of real wastewater effluents—A review[J]. Process Safety and Environmental Protection, 2018, 113: 48-67. |
38 | ASAITHAMBI P, GOVINDARAJAN R, YESUF M B, et al. Removal of color, COD and determination of power consumption from landfill leachate wastewater using an electrochemical advanced oxidation processes[J]. Separation and Purification Technology, 2020, 233: 115935. |
39 | ZHENG H S, GUO W Q, WU Q L, et al. Electro-peroxone pretreatment for enhanced simulated hospital wastewater treatment and antibiotic resistance genes reduction[J]. Environment International, 2018, 115: 70-78. |
40 | LI H N, ZHANG Z G, DUAN J T, et al. Electrochemical disinfection of secondary effluent from a wastewater treatment plant: removal efficiency of ARGs and variation of antibiotic resistance in surviving bacteria[J]. Chemical Engineering Journal, 2020, 392: 123674. |
41 | ZHU L Y, SANTIAGO-SCHÜBEL B, XIAO H X, et al. Electrochemical oxidation of fluoroquinolone antibiotics: mechanism, residual antibacterial activity and toxicity change[J]. Water Research, 2016, 102: 52-62. |
42 | HUSSAIN S, GUL S, STETER J R, et al. Route of electrochemical oxidation of the antibiotic sulfamethoxazole on a mixed oxide anode[J]. Environmental Science and Pollution Research, 2015, 22(19): 15004-15015. |
43 | DE AMORIM K P, ROMUALDO L L, ANDRADE L S. Electrochemical degradation of sulfamethoxazole and trimethoprim at boron-doped diamond electrode: performance, kinetics and reaction pathway[J]. Separation and Purification Technology, 2013, 120: 319-327. |
44 | ZHOU Z, LIU X T, SUN K, et al. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: a review[J]. Chemical Engineering Journal, 2019, 372: 836-851. |
45 | LUTZE H V, BIRCHER S, RAPP I, et al. Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter[J]. Environmental Science & Technology, 2015, 49(3): 1673-1680. |
46 | 张垚, 王静. 水环境抗生素残留及其生态与健康影响[J]. 湖北医药学院学报, 2019, 38(6): 609-614. |
ZHANG Yao, WANG Jing. Antibiotic residues in water environment and their ecological and health effects[J]. Journal of Hubei University of Medicine, 2019, 38(6): 609-614. | |
47 | 刘衡锡. 硫酸根自由基在水处理中的反应特性[D]. 大连: 大连海事大学, 2013. |
LIU Hengxi. Response characteristics of sulfate radicals in water treatment[D]. Dalian: Dalian Maritime University, 2013. | |
48 | 米记茹, 田立平, 刘丽丽, 等. 过硫酸盐活化方法的研究进展[J]. 工业水处理, 2020, 40(7): 12-17. |
MI Jiru, TIAN Liping, LIU Lili, et al. Research progress on persulfate activation method[J]. Industrial Water Treatment, 2020, 40(7): 12-17. | |
49 | XIAO R Y, LIU K, BAI L, et al. Inactivation of pathogenic microorganisms by sulfate radical: present and future[J]. Chemical Engineering Journal, 2019, 371: 222-232. |
50 | MA H K, ZHANG L L, HUANG X M, et al. A novel three-dimensional galvanic cell enhanced Fe2+/persulfate system: high efficiency, mechanism and damaging effect of antibiotic resistant E. coli and genes[J]. Chemical Engineering Journal, 2019, 362: 667-678. |
51 | SHOSUKE K, KOJI Y, SUMIKO I. Site-specific DNA damage induced by sulfite in the presence of cobalt(Ⅱ) ion: role of sulfate radical[J]. Biochemical Pharmacology, 1989, 38(20): 3491-3496. |
52 | MULLER J G, HICKERSON R P, PEREZ R J, et al. DNA damage from sulfite autoxidation catalyzed by a nickel(Ⅱ) peptide[J]. Journal of the American Chemical Society, 1997, 119(7): 1501-1506. |
53 | LU Y, XIAO Y F, ZHENG G Y, et al. Conditioning with zero-valent iron or Fe2+ activated peroxydisulfate at an acidic initial sludge pH removed intracellular antibiotic resistance genes but increased extracellular antibiotic resistance genes in sewage sludge[J]. Journal of Hazardous Materials, 2020, 386: 121982. |
54 | NORZAEE S, TAGHAVI M, DJAHED B, et al. Degradation of Penicillin G by heat activated persulfate in aqueous solution[J]. Journal of Environmental Management, 2018, 215: 316-323. |
55 | LIU L, LIN S, ZHANG W, et al. Kinetic and mechanistic investigations of the degradation of sulfachloropyridazine in heat-activated persulfate oxidation process[J]. Chemical Engineering Journal, 2018, 346: 515-524. |
56 | ZHANG Y X, LIU H L, XIN Y J, et al. Erythromycin degradation and ERY-resistant gene inactivation in erythromycin mycelial dreg by heat-activated persulfate oxidation[J]. Chemical Engineering Journal, 2019, 358: 1446-1453. |
57 | ZHANG Y X, LIU H L, DAI X H, et al. Impact of application of heat-activated persulfate oxidation treated erythromycin fermentation residue as a soil amendment: soil chemical properties and antibiotic resistance[J]. Science of the Total Environment, 2020, 736: 139668. |
58 | DRZEWICZ P, PEREZ-ESTRADA L, ALPATOVA A, et al. Impact of peroxydisulfate in the presence of zero valent iron on the oxidation of cyclohexanoic acid and naphthenic acids from oil sands process-affected water[J]. Environmental Science & Technology, 2012, 46(16): 8984-8991. |
59 | FERNANDEZ J, MARUTHAMUTHU P, RENKEN A, et al. Bleaching and photobleaching of Orange Ⅱ within seconds by the oxone/Co2+ reagent in Fenton-like processes[J]. Applied Catalysis B: Environmental, 2004, 49(3): 207-215. |
60 | 黄智辉, 纪志永, 陈希, 等. 过硫酸盐高级氧化降解水体中有机污染物研究进展[J]. 化工进展, 2019, 38(5): 2461-2470. |
HUANG Zhihui, JI Zhiyong, CHEN Xi, et al. Degradation of organic pollutants in water by persulfate advanced oxidation[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2461-2470. | |
61 | ZHOU Z, MA J, LIU X T, et al. Activation of peroxydisulfate by nanoscale zero-valent iron for sulfamethoxazole removal in agricultural soil: effect, mechanism and ecotoxicity[J]. Chemosphere, 2019, 223: 196-203. |
62 | LIN C C, CHEN Y H. Feasibility of using nanoscale zero-valent iron and persulfate to degrade sulfamethazine in aqueous solutions[J]. Separation and Purification Technology, 2018, 194: 388-395. |
63 | HUO X W, ZHOU P, LIU Y X, et al. Removal of contaminants by activating peroxymonosulfate (PMS) using zero valent iron (ZVI)-based bimetallic particles (ZVI/Cu, ZVI/Co, ZVI/Ni, and ZVI/Ag)[J]. RSC Advances, 2020, 10(47): 28232-28242. |
64 | QU G Z, CHU R J, WANG H, et al. Simultaneous removal of chromium(Ⅵ) and tetracycline hydrochloride from simulated wastewater by nanoscale zero-valent iron/copper-activated persulfate[J]. Environmental Science and Pollution Research, 2020, 27(32): 40826-40836. |
65 | ZOU X L, ZHOU T, MAO J, et al. Synergistic degradation of antibiotic sulfadiazine in a heterogeneous ultrasound-enhanced Fe0/persulfate Fenton-like system[J]. Chemical Engineering Journal, 2014, 257: 36-44. |
66 | PAN Y W, ZHANG Y, ZHOU M H, et al. Synergistic degradation of antibiotic sulfamethazine by novel pre-magnetized Fe0/PS process enhanced by ultrasound[J]. Chemical Engineering Journal, 2018, 354: 777-789. |
67 | YANG L, LI H, XUE J M, et al. Hydrothermal enhanced nanoscale zero-valent iron activated peroxydisulfate oxidation of chloramphenicol in aqueous solutions: Fe-speciation analysis and modeling optimization[J]. Water, 2019, 12(1): 131. |
68 | JIANG X, GUO Y H, ZHANG L B, et al. Catalytic degradation of tetracycline hydrochloride by persulfate activated with nano Fe0 immobilized mesoporous carbon[J]. Chemical Engineering Journal, 2018, 341: 392-401. |
69 | 梁宇坤. 生物炭负载纳米零价铁镍激活过硫酸盐降解诺氟沙星废水[D]. 太原: 太原理工大学, 2019. |
LIANG Yukun. Degradation of norfloxacin in water using persulfate activated by reduced biochar-supported nano zero valent iron/nickel[D]. Taiyuan: Taiyuan University of Technology, 2019. | |
70 | DONG H R, WANG B, LI L, et al. Activation of persulfate and hydrogen peroxide by using sulfide-modified nanoscale zero-valent iron for oxidative degradation of sulfamethazine: a comparative study[J]. Separation and Purification Technology, 2019, 218: 113-119. |
71 | GAO J, HAN D Q, XU Y, et al. Persulfate activation by sulfide-modified nanoscale iron supported by biochar (S-nZVI/BC) for degradation of ciprofloxacin[J]. Separation and Purification Technology, 2020, 235: 116202. |
72 | GAO J F, DUAN W J, ZHANG W Z, et al. Effects of persulfate treatment on antibiotic resistance genes abundance and the bacterial community in secondary effluent[J]. Chemical Engineering Journal, 2020, 382: 121860. |
73 | ZHANG L L, JIN H, MA H K, et al. Oxidative damage of antibiotic resistant E. coli and gene in a novel sulfidated micron zero-valent activated persulfate system[J]. Chemical Engineering Journal, 2020, 381: 122787. |
74 | SADEGHI M, SADEGHI R, GHASEMI B, et al. Removal of azithromycin from aqueous solution using UV-light alone and UV plus persulfate (UV/Na2S2O8) processes[J]. Iranian Journal of Pharmaceutical Research, 2018, 17(S2): 54-64. |
75 | GUO H G, KE T L, GAO N Y, et al. Enhanced degradation of aqueous norfloxacin and enrofloxacin by UV-activated persulfate: kinetics, pathways and deactivation[J]. Chemical Engineering Journal, 2017, 316: 471-480. |
76 | SERNA-GALVIS E A, FERRARO F, SILVA-AGREDO J, et al. Degradation of highly consumed fluoroquinolones, penicillins and cephalosporins in distilled water and simulated hospital wastewater by UV254 and UV254/persulfate processes[J]. Water Research, 2017, 122: 128-138. |
77 | ZHANG Y Q, XIAO Y J, ZHONG Y, et al. Comparison of amoxicillin photodegradation in the UV/H2O2 and UV/persulfate systems: reaction kinetics, degradation pathways, and antibacterial activity[J]. Chemical Engineering Journal, 2019, 372: 420-428. |
78 | SERNA-GALVIS E A, SALAZAR-OSPINA L, JIMÉNEZ J N, et al. Elimination of carbapenem resistant Klebsiella pneumoniae in water by UV-C, UV-C/persulfate and UV-C/H2O2. Evaluation of response to antibiotic, residual effect of the processes and removal of resistance gene[J]. Journal of Environmental Chemical Engineering, 2020, 8(1): 102196. |
79 | RODRÍGUEZ-CHUECA J, AMOR C, MOTA J, et al. Oxidation of winery wastewater by sulphate radicals: catalytic and solar photocatalytic activations[J]. Environmental Science and Pollution Research, 2017, 24(28): 22414-22426. |
80 | KHANDARKHAEVA M S, ASEEV D G, SIZYKH M R, et al. Oxidation of atrazine by photoactivated potassium persulfate in aqueous solutions[J]. Russian Journal of Physical Chemistry A, 2016, 90(11): 2177-2182. |
81 | LUO H J, LI C L, SUN X, et al. Cathodic indirect oxidation of organic pollutant paired to anodic persulfate production[J]. Journal of Electroanalytical Chemistry, 2017, 792: 110-116. |
82 | 张浩宇, 班福忱, 王艳欣. 过硫酸盐高级氧化技术处理有机废水的研究进展[J]. 辽宁化工, 2018, 47(5): 459-460, 472. |
ZHANG Haoyu, BAN Fuchen, WANG Yanxin. Research progress in organic wastewater treatment by persulfate advanced oxidation technology[J]. Liaoning Chemical Industry, 2018, 47(5): 459-460, 472. | |
83 | LIU J L, ZHONG S, SONG Y P, et al. Degradation of tetracycline hydrochloride by electro-activated persulfate oxidation[J]. Journal of Electroanalytical Chemistry, 2018, 809: 74-79. |
84 | MALAKOOTIAN M, AHMADIAN M. Ciprofloxacin removal by electro-activated persulfate in aqueous solution using iron electrodes[J]. Applied Water Science, 2019, 9(5): 1-10. |
85 | SEPYANI F, DARVISHI CHESHMEH S R, JORFI S, et al. Implementation of continuously electro-generated Fe3O4 nanoparticles for activation of persulfate to decompose amoxicillin antibiotic in aquatic media: UV254 and ultrasound intensification[J]. Journal of Environmental Management, 2018, 224: 315-326. |
86 | WANG Y R, CHU W. Degradation of a xanthene dye by Fe(Ⅱ)-mediated activation of oxone process[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1455-1461. |
87 | KAUR B, KUNTUS L, TIKKER P, et al. Photo-induced oxidation of ceftriaxone by persulfate in the presence of iron oxides[J]. Science of the Total Environment, 2019, 676: 165-175. |
88 | XUE H H, GAO S Y, ZHENG N, et al. Degradation of norfloxacin in aqueous solution with UV/peroxydisulfate[J]. Water Science and Technology, 2019, 79(12): 2387-2394. |
89 | SUN Y Q, CHO D W, GRAHAM N J D, et al. Degradation of antibiotics by modified vacuum-UV based processes: mechanistic consequences of H2O2 and K2S2O8 in the presence of halide ions[J]. Science of the Total Environment, 2019, 664: 312-321. |
90 | ZHANG Y Y, LI L Y, PAN Z H, et al. Degradation of sulfamethoxazole by UV/persulfate in different water samples: influential factors, transformation products and toxicity[J]. Chemical Engineering Journal, 2020, 379: 122354. |
91 | ZHUAN R, WANG J L. Enhanced mineralization of sulfamethoxazole by gamma radiation in the presence of Fe3O4 as Fenton-like catalyst[J]. Environmental Science and Pollution Research, 2019, 26(27): 27712-27725. |
92 | LIU X H, LIU Y, LU S Y, et al. Degradation difference of ofloxacin and levofloxacin by UV/H2O2 and UV/PS (persulfate): efficiency, factors and mechanism[J]. Chemical Engineering Journal, 2020, 385: 123987. |
93 | XIE P C, MA J, LIU W, et al. Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals[J]. Water Research, 2015, 69: 223-233. |
94 | REZAEI R, MOHSENI M. Impact of natural organic matter on the degradation of 2,4-dichlorophenoxy acetic acid in a fluidized bed photocatalytic reactor[J]. Chemical Engineering Journal, 2017, 310: 457-463. |
95 | JI Y F, SHI Y Y, WANG L, et al. Sulfate radical-based oxidation of antibiotics sulfamethazine, sulfapyridine, sulfadiazine, sulfadimethoxine, and sulfachloropyridazine: formation of SO2 extrusion products and effects of natural organic matter[J]. Science of the Total Environment, 2017, 593/594: 704-712. |
96 | LIU Y Q, HE X X, FU Y S, et al. Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254nm activation of persulfate[J]. Journal of Hazardous Materials, 2016, 305: 229-239. |
97 | LIANG C J, SU H W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J]. Industrial & Engineering Chemistry Research, 2009, 48(11): 5558-5562. |
98 | MALAKOTIAN M, ASADZADEH S N, KHATAMI M, et al. Protocol encompassing ultrasound/Fe3O4 nanoparticles/persulfate for the removal of tetracycline antibiotics from aqueous environments[J]. Clean Technologies and Environmental Policy, 2019, 21(8): 1665-1674. |
99 | JI Y F, FAN Y, LIU K, et al. Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds[J]. Water Research, 2015, 87: 1-9. |
100 | VELOSA A C, NASCIMENTO C A O. Evaluation of sulfathiazole degradation by persulfate in Milli-Q water and in effluent of a sewage treatment plant[J]. Environmental Science and Pollution Research, 2017, 24(7): 6270-6277. |
101 | PIRSAHEB M, HOSSAINI H, JANJANI H. Reclamation of hospital secondary treatment effluent by sulfate radicals based-advanced oxidation processes (SR-AOPs) for removal of antibiotics[J]. Microchemical Journal, 2020, 153: 104430. |
[1] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[2] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[3] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[4] | 白志华, 张军. 二乙烯三胺五亚甲基膦酸/Fenton体系氧化脱除NO[J]. 化工进展, 2023, 42(9): 4967-4973. |
[5] | 王琦, 寇丽红, 王冠宇, 王吉坤, 刘敏, 李兰廷, 王昊. 焦化废水生物出水中可溶解性有机物的分子识别[J]. 化工进展, 2023, 42(9): 4984-4993. |
[6] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[7] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[8] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[9] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
[10] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[11] | 陈娜, 张肖静, 张楠, 马冰冰, 张涵, 杨浩洁, 张宏忠. 淬灭酶对亚硝化-混合自养脱氮系统的影响[J]. 化工进展, 2023, 42(7): 3816-3823. |
[12] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[13] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[14] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[15] | 王久衡, 荣鼐, 刘开伟, 韩龙, 水滔滔, 吴岩, 穆正勇, 廖徐情, 孟文佳. 水蒸气强化纤维素模板改性钙基吸附剂固碳性能及强度[J]. 化工进展, 2023, 42(6): 3217-3225. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1185
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 734
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |