化工进展 ›› 2021, Vol. 40 ›› Issue (7): 3664-3678.DOI: 10.16085/j.issn.1000-6613.2020-1504
宋俊1(), 楚晓婉1, 张琦1, 陈宇慧1, 张学清2, 张国帅1, 张若琳1
收稿日期:
2020-07-31
修回日期:
2021-01-06
出版日期:
2021-07-06
发布日期:
2021-07-19
通讯作者:
宋俊
作者简介:
宋俊(1986—),男,博士,讲师,研究方向为冷气体动力喷涂技术、锂离子电池硅基负极材料。E-mail:基金资助:
SONG Jun1(), CHU Xiaowan1, ZHANG Qi1, CHEN Yuhui1, ZHANG Xueqing2, ZHANG Guoshuai1, ZHANG Ruolin1
Received:
2020-07-31
Revised:
2021-01-06
Online:
2021-07-06
Published:
2021-07-19
Contact:
SONG Jun
摘要:
硅(Si)被视为取代现有商业化石墨负极极具潜力的材料之一,然而硅基材料在充放电过程中巨大的体积变化严重影响电池的电化学性能和使用寿命,因此如何有效克服体积效应以提高其电化学性能成为亟待解决的问题。本文围绕硅基复合负极制备过程,从物理方法、化学方法、多种方法结合三个方面综述了目前在硅基负极改性方面的最新进展,重点对不同的制备方法及过程进行了简介、分类、比较和分析,总结了其优缺点,指出多种方法结合制备硅基复合负极最具优势。最后对未来高性能硅基复合负极的研究和开发进行了展望,以期为硅基负极性能优化及探索新型制备方法提供借鉴。
中图分类号:
宋俊, 楚晓婉, 张琦, 陈宇慧, 张学清, 张国帅, 张若琳. 锂离子电池硅基复合负极制备方法[J]. 化工进展, 2021, 40(7): 3664-3678.
SONG Jun, CHU Xiaowan, ZHANG Qi, CHEN Yuhui, ZHANG Xueqing, ZHANG Guoshuai, ZHANG Ruolin. Preparation methods of the silicon-based composite anode of lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3664-3678.
项目 | 沉积方法比较 | ||
---|---|---|---|
EBE | MS | PLD | |
靶材要求 | 无 | 与膜成分一致 | 无 |
沉积范围 | 目标表面 | 目标表面及周边 | 目标表面 |
均匀性 | 好 | 差 | 差 |
膜层特点 | 低温时密度小,气孔多,附着性差 | 密度大,气孔少,溅射气体混入较多,附着性好 | 熔点高,沉积效率高,结构复杂 |
表1 物理沉积方法比较
项目 | 沉积方法比较 | ||
---|---|---|---|
EBE | MS | PLD | |
靶材要求 | 无 | 与膜成分一致 | 无 |
沉积范围 | 目标表面 | 目标表面及周边 | 目标表面 |
均匀性 | 好 | 差 | 差 |
膜层特点 | 低温时密度小,气孔多,附着性差 | 密度大,气孔少,溅射气体混入较多,附着性好 | 熔点高,沉积效率高,结构复杂 |
项目 | 沉积方法比较 | ||
---|---|---|---|
CVD | ALD | ED | |
吸附方式 | 物理吸附 | 化学吸附 | 无 |
沉积原理 | 通过化学反应将气相物质转化成固相物质并沉积于基板上获得高质量及高纯度薄膜 | 反应气体与基板之间的气-固相反应生成膜 | 金属或金属化合物在电场作用下通过电解液发生氧化还原反应完成沉积 |
用材范围 | 广 | 窄 | 广 |
沉积特点 | 沉积物随气相组成的变化而变化,从而获得梯度或混合沉积物,附着力强,厚度均匀,污染小 | 每次反应只沉积一层原子,逐层沉积,沉积速度慢但厚度均匀一致,成本高 | 可沉积成表面涂层,也可是块状,成本低 |
表2 化学沉积方法比较
项目 | 沉积方法比较 | ||
---|---|---|---|
CVD | ALD | ED | |
吸附方式 | 物理吸附 | 化学吸附 | 无 |
沉积原理 | 通过化学反应将气相物质转化成固相物质并沉积于基板上获得高质量及高纯度薄膜 | 反应气体与基板之间的气-固相反应生成膜 | 金属或金属化合物在电场作用下通过电解液发生氧化还原反应完成沉积 |
用材范围 | 广 | 窄 | 广 |
沉积特点 | 沉积物随气相组成的变化而变化,从而获得梯度或混合沉积物,附着力强,厚度均匀,污染小 | 每次反应只沉积一层原子,逐层沉积,沉积速度慢但厚度均匀一致,成本高 | 可沉积成表面涂层,也可是块状,成本低 |
61 | GU Zhiqiang, LI Wenli, CHEN Yuxi, et al. Synthesis of the microspherical structure of ternary SiOx@SnO2@C by a hydrothermal method as the anode for high-performance lithium-ion batteries[J]. Sustainable Energy & Fuels, 2020, 4(5): 2333-2341. |
62 | HE Yanyan, XU Gang, WANG Chunsheng, et al. Horsetail-derived Si@N-doped carbon as low-cost and long cycle life anode for Li-ion half/full cells[J]. Electrochimica Acta, 2018, 264: 173-182. |
63 | FURQUAN Mohammad, KHATRIBAIL Anish Raj,VIJAYALAKSHMI Savithri, et al. Efficient conversion of sand to nano-silicon and its energetic Si-C composite anode design for high volumetric capacity lithium-ion battery[J]. Journal of Power Sources, 2018, 382: 56-68. |
64 | ZHOU Zhengwei, PAN Long, LIU Yitao, et al. From sand to fast and stable silicon anode:synthesis of hollow Si@void@C yolk-shell microspheres by aluminothermic reduction for lithium storage[J]. Chinese Chemical Letters, 2019, 30(3): 610-617. |
65 | MISHRA Kuber, ZHENG Jianming, LUO Langli, et al. High performance porous Si@C anodes synthesized by low temperature aluminothermic reaction[J]. Electrochimica Acta, 2018, 269: 509-516. |
66 | QIAN Lingzhi, LAN Jinle, XUE Mengyao, et al. Two-step ball-milling synthesis of a Si/SiOx/C composite electrode for lithium ion batteries with excellent long-term cycling stability[J]. RSC Advances, 2017, 7(58): 36697-36704. |
67 | CHOI Woo Jeong, REDDYPRAKASH M, LOKA Chadrasekhar, et al. Carbon coated Si-metal silicide composite anode materials prepared by high-energy milling and carburization for Li-ion rechargeable batteries[J]. Journal of the Electrochemical Society, 2019, 166(3): A5131-A5138. |
68 | YI Zheng, WANG Weiwei, QIAN Yong, et al. Mechanical pressing route for scalable preparation of microstructured/nanostrutured Si/graphite composite for lithium ion battery anodes[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14230-14238. |
69 | VAHIDE Ghanooni Ahmadabadi, KAMYAR Shirvanimoghaddam, ROBERT Kerr, et al. Structure-rate performance relationship in Si nanoparticles-carbon nanofiber composite as flexible anode for lithium-ion batteries[J]. Electrochimica Acta, 2020, 330: 135232. |
70 | 祝福生, 夏楠君, 赵宝君, 等. 湿法刻蚀提高硅刻蚀均匀性技术研究[J]. 电子工业专用设备, 2019(5): 13-16. |
ZHU Fusheng, XIA Nanjun, ZHAO Baojun, et al. Research on technology of improving silicon etching uniformity by wet etching[J]. Equipment for Electronic Products Manufacturing, 2019(5): 13-16. | |
71 | XIA Mengting, CHEN Bingjie, GU Feng, et al. Ti3C2Tx MXene nanosheets as a robust and conductive tight on Si anodes significantly enhance electrochemical lithium storage performance[J]. ACS Nano, 2020, 14(4): 5111-5120. |
1 | 索鎏敏, 李泓. 锂离子电池过往与未来[J]. 物理, 2020, 49(1): 17-23. |
SUO Liumin, LI Hong. The past, present and future of lithium ion batteries[J]. Physics, 2020, 49(1): 17-23. | |
72 | BAI Ziyu, TU Wenmao, ZHU Junke, et al. POSS-derived synthesis and full life structural analysis of Si@C as anode material in lithium ion battery[J]. Polymers, 2019, 11(4): 576. |
73 | PARK Yang Kyu, BOYER Mathew, LEE Jae Won, et al. Synthesis of Si/SiOx from talc and its characteristics as an anode for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2019, 833: 552-559. |
74 | LI Xuequan, XING Yufeng, XU Jun, et al. Uniform yolk-shell structured Si-C nanoparticles as a high performance anode material for the Li-ion battery[J]. Chemical Communications, 2020, 56: 364. |
75 | CHEN Yifan, MAO Qinan, BAO Liang, et al. Rational design of coaxial MWCNTs@Si/SiOx@C nanocomposites as extending-life anode materials for lithium-ion batteries[J]. Ceramics International, 2018, 44(14): 16660-16667. |
76 | XIAO Kuikui, TANG Qunli, LIU Zheng, et al. 3D interconnected mesoporous Si/SiO2 coated with CVD derived carbon as an advanced anode material of Li-ion batteries[J]. Ceramics International, 2018, 44(4): 3548-3555. |
77 | KWON Seongwoo, KIM Kyeong Ho, KIM Won Sik, et al. Mesoporous Si-Cu nanocomposite anode for lithium ion battery produced by magnesiothermic reduction and electroless deposition[J]. Nanotechnology, 2019, 30: 405401. |
78 | KONG Xiangzhong, ZHENG Yuchao, WANG Yaping, et al. Necklace-like Si@C nanofibers as robust anode materials for high performance lithium ion batteries[J]. Science Bulletin, 2019, 64(4): 261-269. |
79 | XIA Qi, XU Anding, HUANG Chuyun, et al.High-rate performance of porous Si@SiOx@N-Rich carbon nanofibers as anode in lithium-ion batteries under high temperature[J]. ChemElectroChem, 2019, 6(17): 4402-4410. |
80 | WANG Ran, WANG Jing, CHEN Shi, et al. Toward mechanically stable silicon-based anodes using Si/SiOx@C hierarchical structures with well-controlled internal buffer voids[J]. ACS Applied Materials & Interfaces, 2018, 10: 41422-41430. |
81 | WU Hao, ZHENG Lihua, ZHAN Jing, et al. Recycling silicon-based industrial waste as sustainable sources of Si/SiO2 composites for high-performance Li-ion battery anodes[J]. Journal of Power Sources, 2020, 449: 227513. |
82 | LU Haoqi, CHEN Weilun, LIU Qiaoyun, et al. Si/Cu3Si@C composite encapsulated in CNTs network as high performance anode for lithium ion batteries[J]. Journal of Wuhan University of Technology(Materials Science), 2019, 34(5): 1055-1061. |
83 | XU Tianjun, LIN Ning, CAI Wenlong, et al. Stabilizing Si/graphite composites with Cu and in situ synthesized carbon nanotubes for high-performance Li-ion battery anodes[J]. Inorganic Chemistry Frontiers, 2018, 5:1463. |
84 | REN Yanbo, ZHANG Shichao, ZHANG Lincai, et al. 3D Si@Cu-Ni nano-pillars array composite as carbon/binder free anode for lithium ion battery[J]. Journal of Materials Research and Technology, 2020, 9(2): 1549-1558. |
85 | LIN Guanhua, WANG Hongchun, ZHANG Ling, et al. Graphene nanowalls conformally coated with amorphous/ nanocrystalline Si as high-performance binder-free nanocomposite anode for lithium-ion batteries[J]. Journal of Power Sources, 2019, 437: 226909. |
2 | 朱瑞, 邓卫斌, 李军, 等. 锂离子电池硅-碳负极材料的研究进展[J]. 化工新型材料, 2018, 550(7): 40-45. |
ZHU Rui, DENG Weibin, LI Jun, et al. Research progress of silicon-carbon cathode material for lithium ionic battery[J]. New Chemical Materials, 2018, 550(7): 40-45. | |
3 | 王艺璇, 高波, 刘泽昆, 等. 多孔硅/石墨烯锂离子电池负极材料的制备及其电化学性能研究[J]. 功能材料, 2019, 50(12): 12074-12079. |
WANG Yixuan, GAO Bo, LIU Zekun, et al. Preparation and electrochemical properties of porous silicon/graphene as LIB anodes[J]. Journal of Functional Materials, 2019, 50(12): 12074-12079. | |
4 | 周军华, 罗飞, 褚赓, 等. 锂离子电池纳米硅碳负极材料研究进展[J]. 储能科学与技术, 2020, 9(2): 569-582. |
ZHOU Junhua, LUO Fei, CHU Geng, et al. Research progress on nano silicon-carbon anode materials for lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(2): 569-582. | |
5 | 秦学政, 邱占疆, 秦学红, 等. 球磨法制备锆英砂粉体研究[J]. 唐山学院学报, 2019. 32(6): 43-46. |
QIN Xuezheng,QIU Zhanjiang, QIN Xuehong, et al. Study on zircon powder production by ball mill[J]. Journal of Tangshan University, 2019, 32(6): 43-46. | |
6 | 孙洪凯. 脉冲放电和高能球磨组合制备纳米硅颗粒的储锂性能研究[D]. 南京: 南京航空航天大学, 2018. |
SUN Hongkai. Research on lithium storage properties of nanometer silicon particles prepared by pulse discharge and high-energy ball milling[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. | |
7 | KIM Dong Phil, LOKA Chadrasekhar, Shin Yong JOO, et al. Si(-silicide) embedded in highly elastic exfoliated graphite nanocomposite anode materials produced by high-energy mechanical milling for lithium-ion secondary batteries[J]. Materialia, 2018, 4: 510-517. |
8 | PAREKH Mihit H, SEDIAKO Anton D, NASERI Ali, et al. In situ mechanistic elucidation of superior Si-C-graphite li-ion battery anode formation with thermal safety aspects[J]. Energy Weekly News, 2020, 10(2): 1902799. |
9 | LI Jinyi, LI Ge, ZHANG Juan, et al. Rational design of robust Si/C microspheres for high tap density anode materials[J]. ACS Applied Materials & Interfaces, 2019, 11: 4057-4064. |
10 | QU Xiaolei, ZHANG Xin, GAO Yuan, et al. Remarkably improved cycling stability of boron-strengthened multicomponent layer protected micron-Si composite anode[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 19167-19175. |
11 | COQUIL Gael, FRAISSE Bernard, MONCONDUIT Laure, et al. Versatile Si/P system as efficient anode for lithium and sodium batteries: understanding of an original electrochemical mechanism by a full XRD-NMR study[J]. ACS Applied Energy Materials, 2018, 1(8): 3778-3789. |
12 | CABELLO Marta, GUCCIARDI Emanuele, CARRIAZO Daniel, et al. Towards a high-power Si@graphite anode for lithium ion batteries through a wet ball milling process[J]. Molecules, 2020, 25(11): 2494. |
13 | REN Wenfeng, LI Juntao, HUANG Zhigen, et al. Fabrication of Si nanoparticles@conductive carbon framework@polymer composite as high-areal-capacity anode of lithium-ion batteries[J]. Chemelectrochem, 2018, 5: 1-9. |
14 | ZHANG Xiaosong, ZHOU Le, ZHANG Yi, et al. A facile method to fabricate a porous Si/C composite with excellent cycling stability for use as the anode in a lithium ion battery[J]. Chemical Communications, 2019, 55(89): 13438-13441. |
15 | Antartis DIMITRIOS A, WANG Haoran, CHEW Huck Beng, et al. Nanofibrillar Si helices for low-stress, high-capacity Li+ anodes with large affine deformations[J]. ACS Applied Materials & Interfaces, 2019, 11: 11715-11721. |
16 | HUANG Shaozhuan, ZHANG Lin, LIU Lifeng, et al. Rationally engineered amorphous TiOx/Si/TiOx nanomembrane as an anode material for high energy lithium ion battery[J]. Energy Storage Materials, 2018, 12: 23-29. |
17 | Deniz KARAHAN B, AMINE K. Engineering self-standing Si-Mo-O based nanostructure arrays as anodes for new era lithium-ion batteries[J]. Journal of Applied Electrochemistry, 2019, 49(23): 671-680. |
18 | ZHU Xiaobo, JIANG Xin, YAO Xiayin, et al. Si/a-C nanocomposites with a multiple buffer structure via one-step magnetron sputtering for ultrahigh-stability lithium-ion battery anodes[J]. ACS Applied Materials & Interfaces, 2019, 11(49): 45726-45736. |
19 | ZHANG Zailei, WANG Zhonglin, LU Xianmao. Multishelled Si@Cu microparticles supported on 3D Cu current collectors for stable and binder-free anodes of lithium-ion batteries[J]. ACS Nano, 2018, 12(4): 3587-3599. |
20 | In Kyoung AHN, LEE Young Joo, NA Sekwon, et al. Improved battery performance of nanocrystalline Si anodes utilized by radio frequency (RF) sputtered multifunctional amorphous Si coating layers[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2242-2248. |
21 | MUKANOVA Aliya, JETYBAYEVA Albina, MYUNG Seung Taek, et al. A mini-review on the development of Si-based thin film anodes for Li-ion batteries[J]. Materials Today Energy, 2018, 9: 49-66. |
22 | Lee Duk Hee, SHIM Hyun Woo, KIM Dong Wan. Facile synthesis of heterogeneous Ni-Si@C nanocomposites as high-performance anodes for Li-ion batteries[J]. Electrochimica Acta, 2014, 146: 60-67. |
23 | WU Hui, CHAN Gerentt, CHOI Jang Wook, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology, 2012, 7(5): 310-315. |
24 | TIAN Xiaoqiang, XU Qi, CHENG Li, et al. Enhancing the performance of a self-standing Si/PCNF anode by optimizing the porous structure[J]. ACS Applied Materials & Interfaces, 2020, 12: 27219-27225. |
25 | KIM Kee Bun, HAN Sang Sub, JEONG Je Jun, et al. Nanostructured Si/C fibers as a highly reversible anode material for all-solid-state lithium-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(9): A1903-A1908. |
26 | LEE Byoung Sun, YANG Ho Sung, LEE Kang Hee, et al. Rational design of a Si-Sn-C ternary anode having exceptional rate performance[J]. Energy Storage Materials, 2019, 17: 62-69. |
27 | 邹爽, 赵金松, 陈驰. 静电纺丝技术的影响因素及应用研究综述[J]. 河南科技, 2019(5): 75-77. |
ZOU Shuang, ZHAO Jinsong, CHEN Chi. Review on the influence factors and application of electrostatic spinning technology[J]. Henan Science and Technology, 2019(5): 75-77. | |
28 | LIN Dingchang, LU Zhenda, LIU Nian, et al. High tap density secondary silicon particle anodes by scalable mechanical pressing for lithium-ion batteries[J]. Energy Environmental Science, 2015, 8(8): 2371. |
29 | LIU Chaoqun, ZHANG Zhixin, LI Xiuwan, et al. One-step combustion method for pomegranate Si/Ni compostie anode[J]. Materials Letters, 2018, 231(15): 122-125. |
30 | SONG Jun, LIU Juanfang, LI Kepin, et al. Deposition characteristics and behaviour of high-pressure cold-sprayed silicon powder[J]. Surface Engineering, 2017: 1-8. |
31 | SAKAKI K, SHINKAI S, SHIMIZU Y. Investigation of spray conditions and performances of cold-sprayed pure silicon anodes for lithium secondary batteries[C]//Thermal Spray 2007: Global Coating Solutions: Proceedings of the 2007 International Thermal Spray Conference. ASM International, 2007. |
32 | LEE Jong Gun, KIM Do Yeon, KANG Byungjun, et al. Nickel-copper hybrid electrodes self-adhered onto a silicon wafer by supersonic cold-spray[J]. Acta Materialia, 2015, 93: 156-163. |
33 | LEE Jong Gun, JOSHI Bhavana N, LEE Jong Hyuk, et al. Stable high-capacity lithium ion battery anodes produced by supersonic spray deposition of hematite nanoparticles and self-healing reduced graphene oxide[J]. Electrochimica Acta, 2017, 228: 604-610. |
34 | JOSHI Bhavana, LEE Jong Gun, SAMUEL Edmund, et al. Supersonically blown reduced graphene oxide loaded Fe-Fe3C nanofibers for lithium ion battery anodes[J]. Journal of Alloys & Compounds, 2017, 726: 114-120. |
35 | KIM Tae Gun, SAMUEL Edmund, JOSHI Bhavana, et al. Supersonically sprayed rGO-Zn2SnO4 composites as flexible, binder-free, scalable, and high-capacity lithium ion battery anodes[J]. Journal of Alloys and Compounds, 2018, 766: 331-340. |
36 | MOIN Ahmed, Yazdi ALIREZA Z, Dayani SIAVASH B, et al. Fabrication of zinc anodes for aqueous lithium-ion batteries by supersonic cold spraying[J]. Chemelectrochem, 2019, 6(5): 1333-1337. |
37 | 黄立新, 王宗濂, 唐金鑫. 我国喷雾干燥技术研究及进展[J]. 化学工程, 2001(2): 51-55, 73-74. |
HUANG Lixin, WANG Zonglian, TANG Jinxin. Research and progress of spray drying technology in China[J]. Chemical Engineering, 2001(2): 51-55, 73-74. | |
38 | CHEN Libao, XIE Xiaohua, WANG Baofeng, et al. Spherical nanostructured Si/C composite prepared by spray drying technique for lithium ion batteries anode[J]. Materials Science & Engineering B, 2006, 131: 186-190. |
39 | ZHANG Hui, ZHANG Xiaofeng, JIN Hong, et al. A robust hierarchical 3D Si/CNTs composite with void and carbon shell as Li-ion battery anodes[J]. Chemical Engineering Journal, 2019, 360: 974-981. |
40 | JAMALUDDIN Anif, UMESH Bharath, CHEN Fuming, et al. Facile synthesis of core-shell structured Si@graphene balls as a high-performance anode for lithium-ion batteries[J]. Nanoscale, 2020, 12(17): 9616-9627. |
41 | CHEN Hedong, SHEN Kaixiang, HOU Xianhua, et al. Si-based anode with hierarchical protective function and hollow ring-like carbon matrix for high performance lithium ion batteries[J]. Applied Surface Science, 2019, 470: 496-506. |
42 | HUANG Xi, CEN Dingcheng, WEI Run, et al. Synthesis of porous Si/C composite nanosheets from vermiculite with a hierarchical structure as a high-performance anode for lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26854-26862. |
43 | LI Zhaolin, YAO Nana, YANG Zhao, et al. Communication-self-template fabrication of porous Si/SiOx/C anode material for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020,167(2): 020555. |
44 | ZHU Guobin, GU Yuanyuan, WANG Yan, et al. Neuron like Si-carbon nanotubes composite as a high-rate anode of lithium ion batteries[J]. Journal of Alloys and Compounds, 2019, 787: 928-934. |
45 | KILLIAN Stokes, HUGH Geaney, MARTIN Sheehan, et al. Copper silicide nanowires as hosts for amorphous si deposition as a route to produce high capacity lithium-ion battery anodes[J]. Nano Letters, 2019, 19: 8829-8835. |
46 | HUANG Xiaodong, ZHANG Fei, CAO Yuanzhi, et al. Symmetrical sandwich-structured SiN/Si/SiN composite for lithium-ion battery anode with improved cyclability and rate capacity[J]. Journal of the Electrochemical Society, 2018, 165(14): A3397-A3402. |
47 | LIU Chenguang, ZHAO Yinchao, YI Ruowei, et al. Alloyed Cu/Si core-shell nanoflowers on the three-dimensional graphene foam as an anode for lithium-ion batteries[J]. Electrochimica Acta, 2019, 306: 45-53. |
48 | KIM Donghyuk, PARK Minkyu, KIM Sangmin, et al. Conversion reaction of nanoporous ZnO for stable electrochemical cycling of binderless Si microparticle composite anode[J]. ACS Nano, 2018, 12(11): 10903-10913. |
49 | HAN Xiang, ZHANG Ziqi, CHEN Huixin, et al. Double-shelled microscale porous Si anodes for stable lithium-ion batteries[J]. Journal of Power Sources, 2019, 436: 226794. |
50 | Seongki AHN, KADOYA Takahiro, NARA Hiroki, et al. Tin addition for mechanical and electronic improvement of electrodeposited Si-O-C composite anode for lithium-ion battery[J]. Journal of Power Sources, 2019, 437: 226858. |
51 | SHEN Qixin, WANG Qiang, GUO Qingjun, et al. One-step electrodeposition of layer by layer architectural Si-graphene nanocomposite anode of lithium ion battery with enhanced cycle performance[J]. Journal of the Electrochemical Society, 2018, 165(3): 110-115. |
52 | Jeffrey BRINKER C, SCHERER George W. Sol-gel science : the physics and chemistry of sol-gel processing[M]. New York: Academic Press, 1990, 3(10): 522. |
53 | LIU Nian, WU Hui, CUI Yi, et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J]. Nano Letters, 2012, 12(6): 3315-3321. |
54 | LU Bing, MA Bingjie, DENG Xinglan, et al. Dual stabilized architecture of hollow Si@TiO2@C nanospheres as anode of high-performance Li-ion battery[J]. Chemical Engineering Journal, 2018, 351: 269-279. |
55 | ZHANG Wei, LI Jianjiang, GUAN Peng, et al. One-pot sol-gel synthesis of Si/C yolk-shell anodes for high performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 835: 155135. |
56 | JIANG Min, ZHANG Fangzhou, ZHU Guanjia, et al. Interface-amorphized Ti3C2@Si/SiOx@TiO2 anodes with sandwiched structures and stable lithium storage[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 24796-24805. |
57 | 黄剑锋. 溶胶-凝胶原理与技术[M]. 北京: 化学工业出版社, 2005:133. |
HUANG Jianfeng. Principles and techniques of sol-gel[M]. Beijing: Chemical Industry Press, 2005: 133. | |
58 | 施尔畏, 夏长泰, 王步国, 等. 水热法的应用与发展[J]. 无机材料学报, 1996, 11(2): 193-206. |
SHI Erwei, XIA Changtai, WANG Buguo, et al. Application and development of hydrothermal method[J]. Journal of Inorganic Materials, 1996, 11(2): 193-206. | |
59 | Hari RAJ, SINGH Siddharth, Anjan SIL. TiO2 shielded Si nano-composite anode for high energy Li-ion batteries: the morphological and structural study of electrodes after charge-discharge process[J]. Electrochimica Acta, 2019, 326: 134981. |
60 | ZHOU Nan, WU Yufan, LI Yiran, et al. Interconnected structure Si@TiO2-B/CNTs composite anode applied for high-energy lithium-ion batteries[J]. Applied Surface Science, 2020, 500: 144026. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[4] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[5] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[6] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[7] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[8] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[9] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[10] | 李春利, 韩晓光, 刘加朋, 王亚涛, 王晨希, 王洪海, 彭胜. 填料塔液体分布器的研究进展[J]. 化工进展, 2023, 42(9): 4479-4495. |
[11] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[12] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[13] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[14] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[15] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |