1 |
GAO D W, MI C. Modeling and simulation of electric and hybrid vehicles[J]. Proceedings of the IEEE, 2007, 95(4): 729-745.
|
2 |
HANNAN M A, LIPU M S H, HUSSAIN A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 834-854.
|
3 |
CARROTT M J, WALLER B E, WAI C M, et al. High solubility of UO2(NO3)2·2TBP complex in supercritical CO2[J]. Chemical Communications, 1998(3): 373-374.
|
4 |
WEINERT J X, BURKE A F, WEI X Z. Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement[J]. Journal of Power Sources, 2007, 172(2): 938-945.
|
5 |
KITAGAWA Y, KATO K, FUKUI M. Analysis and experimentation for effective cooling of li-ion batteries[J]. Procedia Technology, 2014, 18: 63-67.
|
6 |
WANG T, TSENG K J, ZHAO J Y, et al. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies[J]. Applied Energy, 2014, 134: 229-238.
|
7 |
SUN H G, DIXON R. Development of cooling strategy for an air cooled lithium-ion battery pack[J]. Journal of Power Sources, 2014, 272: 404-414.
|
8 |
TONG W, SOMASUNDARAM K, BIRGERSSON E, et al. Numerical investigation of water cooling for a lithium-ion bipolar battery pack[J]. International Journal of Thermal Sciences, 2015, 94: 259-269.
|
9 |
LAN C J, XU J, QIAO Y, et al. Thermal management for high power lithium-ion battery by minichannel aluminum tubes[J]. Applied Thermal Engineering, 2016, 101: 284-292.
|
10 |
PANCHAL S, KHASOW R, DINCER I, et al. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery[J]. Applied Thermal Engineering, 2017, 122: 80-90.
|
11 |
KIZILEL R, LATEEF A, SABBAH R, et al. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature[J]. Journal of Power Sources, 2008, 183(1): 370-375.
|
12 |
DUAN X, NATERER G F. Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J]. International Journal of Heat and Mass Transfer, 2010, 53(23/24): 5176-5182.
|
13 |
RAO Z H, WANG S F, ZHANG G Q. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery[J]. Energy Conversion & Management, 2011, 52(12): 3408-3414.
|
14 |
PUTRA N, ARIANTARA B, PAMUNGKAS R A. Experimental investigation on performance of lithium-ion battery thermal- management system using flat plate loop heat pipe for electric vehicle application[J]. Applied Thermal Engineering, 2016, 99: 784-789.
|
15 |
LIU F F, LAN F C, CHEN J Q. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling[J]. Journal of Power Sources, 2016, 321: 57-70.
|
16 |
ZOU H M, WANG W, ZHANG G Y, et al. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle[J]. Energy conversion and management, 2016, 118: 88-95.
|
17 |
XU X M, HE R. Research on the heat dissipation performance of battery pack based on forced air cooling[J]. Journal of Power Sources, 2013, 240: 33-41.
|
18 |
CHEN K W, LI X G. Accurate determination of battery discharge characteristics—A comparison between two battery temperature control methods[J]. Journal of Power Sources, 2014, 247: 961-966.
|
19 |
LING Z Y, CHEN J J, FANG X M, et al. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system[J]. Applied Energy, 2014, 121: 104-113.
|
20 |
SAMIMI F, BABAPOOR A, AZIZI M, et al. Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers[J]. Energy, 2016, 96(1): 355-371.
|
21 |
NAZARI M A, AHMADI M H, SADEGHZADEH M, et al. A review on application of nanofluid in various types of heat pipes[J]. Journal of Central South University, 2019, 26 (5): 1021-1041.
|
22 |
翟玉玲, 王江, 李龙, 等. 粒径混合比对Al2O3/水纳米流体传热性能影响及评价[J].化工进展, 2019, 38(11): 4865-4872.
|
|
ZHAI Y L, WANG J, LI L, et al. Evaluation and effect of mixture ratio on heat transfer performance of Al2O3/water nanofluids[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4865-4872.
|
23 |
孙斌, 董爽, 杨迪, 等. 多壁碳纳米管-水/乙二醇纳米流体在汽车散热器中的传热特性[J]. 化工进展, 2019, 38(3): 1207-1217.
|
|
SUN B, DONG S, YANG D, et al. Heat transfer characteristics of MWCNT-water/ethylene glycol nanofluid flow in automotive radiator[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1207-1217.
|
24 |
王宇, 李惟毅. 加热工况及倾斜角影响单环路脉动热管稳定运行的实验研究[J]. 中国电机工程学报, 2011, 31(11): 62-67.
|
|
WANG Y, LI W Y. Experimental investigations on the influence of heating condition and inclination angle on stable operation of a single loop pulsating heat pipe[J]. Proceedings of the CSEE,2011, 31(11): 62-67.
|
25 |
MUKHERJEE S, CHAKRABARTY S, MISHRA P C, et al. Transient heat transfer characteristics and process intensification with Al2O3-water and TiO2-water nanofluids: an experimental investigation[J]. Chemical Engineering and Processing, 2020, 150: 107887-1017896.
|
26 |
HE Y R, JIN Y, CHEN H S, et al. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe[J]. International Journal of Heat and Mass Transfer, 2007, 50(11/12): 2272-2281.
|
27 |
TURGUT A, TAVMAN I, CHIRTOC M, et al. Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids[J]. International Journal of Thermophysics, 2009, 30(4): 1213-1226.
|
28 |
DUANGTHONGSUK W, WONGWISES S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids[J]. Experimental Thermal and Fluid Science, 2009, 33(4): 706-714.
|
29 |
KARTHIKEYAN V K, RAMACHANDRAN K, PILLAI B C, et al. Effect of nanofluids on thermal performance of closed loop pulsating heat pipe[J]. Experimental Thermal and Fluid Science, 2014, 54: 171-178.
|
30 |
QU J, WANG C, LI X J, et al. Heat transfer performance of flexible oscillating heat pipes for electric/hybrid-electric vehicle battery thermal management[J]. Applied Thermal Engineering, 2018, 135: 1-9.
|
31 |
AKILU S, BAHETA A T, SHARMA K V. Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2-CuO/C inclusions[J]. Journal of Molecular Liquids, 2017, 246: 396-405.
|
32 |
SARBOLOOKZADED H S, KARIMIPOUR A, AFRAND M, et al. An experimental study on thermal conductivity of F-MWCNTs-Fe3O4/EG hybrid nanofluid effects of temperature and concentration[J]. International Communications in Heat and Mass Transfer, 2016,76: 171-177.
|
33 |
SATO N, YAGI K. Thermal behavior analysis of nickel metal hydride batteries for electric vehicles[J]. JSAE Review, 2000, 21(2): 205-211.
|
34 |
JIANG Z Y, QU Z G. Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle: a comprehensive numerical study[J]. Applied Energy, 2019, 242: 378-392.
|
35 |
GHALKHANI M, BAHIRAEI F, NAZRI G A, et al. Electrochemical-thermal model of pouch-type lithium-ion batteries[J]. Electrochimica Acta, 2017 (247): 569-587.
|
36 |
RAO Z H, HUO Y T, LIU X J. Experimental study of an OHP-cooled thermal management system for electric vehicle power battery[J]. Experimental Thermal and Fluid Science, 2014, 57: 20-26.
|
37 |
KEBLINSKI P, PHILLPOT S R, CHOI S U S, et al. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)[J]. International Journal of Heat and Mass Transfer, 2002, 45(4): 855-863.
|
38 |
TENG T P, HUNG Y H, TENG T C, et al. The effect of alumina/water nanofluid particle size on thermal conductivity[J]. Applied Thermal Engineering, 2010, 30(14/15): 2213-2218.
|
39 |
NABIL M F, AZMI W H, HAMID K A, et al. Experimental investigation of heat transfer and friction factor of TiO2-SiO2 nanofluids in water /ethylene glycol mixture[J]. International Journal of Heat and Mass Transfer, 2018, 124: 1361-1369.
|