化工进展 ›› 2021, Vol. 40 ›› Issue (6): 3151-3162.DOI: 10.16085/j.issn.1000-6613.2020-1322
曾媛1,2(), 王允圃1,2(), 张淑梅1,2, 夏美玲1,2, 吴秋浩1,2, 刘玉环1,2, RUAN Roger3
收稿日期:
2020-07-13
修回日期:
2020-11-04
出版日期:
2021-06-06
发布日期:
2021-06-22
通讯作者:
王允圃
作者简介:
曾媛(1995—),女,硕士研究生,研究方向为生物质催化共热解。E-mail:基金资助:
ZENG Yuan1,2(), WANG Yunpu1,2(), ZHANG Shumei1,2, XIA Meiling1,2, WU Qiuhao1,2, LIU Yuhuan1,2, RUAN Roger3
Received:
2020-07-13
Revised:
2020-11-04
Online:
2021-06-06
Published:
2021-06-22
Contact:
WANG Yunpu
摘要:
微波热解是一种高效的生物质转化利用技术,具有独特的热效应和非热效应,可将生物质转化为液体燃料和化学品,能有效缓解能源压力,减少环境污染。本文着重探讨了生物质原料特性、微波吸收剂、催化剂对生物质微波热解制备高品质液体燃料和化学品的影响。原料特性的影响主要从生物质的水分含量、灰分含量和有效氢碳比三方面展开论述,催化剂包括金属盐、金属氧化物、ZSM-5、微波驱动型催化剂以及其他一些催化剂,如HY、MCM-41和碳基催化剂等。简述了生物质的微波热解特性、液体燃料的组成以及转化机理,并对现存的热解机理复杂、产物复杂不稳定、目标产物选择性差、催化剂易结焦失活、重复性差等问题进行了分析,展望了未来的发展方向,以期为生物质的高效转化利用提供依据。
中图分类号:
曾媛, 王允圃, 张淑梅, 夏美玲, 吴秋浩, 刘玉环, RUAN Roger. 生物质微波热解制备液体燃料和化学品的研究进展[J]. 化工进展, 2021, 40(6): 3151-3162.
ZENG Yuan, WANG Yunpu, ZHANG Shumei, XIA Meiling, WU Qiuhao, LIU Yuhuan, RUAN Roger. Research progress in preparation of liquid fuels and chemicals by microwave pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3151-3162.
1 | 柴娟. 生物质能的利用与发展[J]. 化工管理, 2019(26): 71. |
CHAI Juan. Utilization and development of biomass energy[J]. Chemical Enterprise Management, 2019(26): 71. | |
2 | DAI Leilei, WANG Yunpu, LIU Yuhuan, et al. Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: a state-of-the-art review[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 20-36. |
3 | 杨栋强. 微波促进经典有机反应的热效应研究[D]. 北京: 北京化工大学, 2018. |
YANG Dongqiang. Study on the thermal effect in classical organic reaction under microwave irradiation[D]. Bejing: Beijing University of Chemical Technology, 2018. | |
4 | 胡亿明, 蒋剑春, 孙云娟, 等.生物质及生物质组分的慢速热解热效应研究[J]. 生物质化学工程, 2013, 47(5): 23-29. |
HU Yiming, JIANG Jianchun, SUN Yunjuan, et al. Heat effect of biomass and biomass components slow pyrolysis[J]. Biomass Chemical Engineering, 2013, 47(5): 23-29. | |
5 | OMAR Rozita, ROBINSON John P. Conventional and microwave-assisted pyrolysis of rapeseed oil for bio-fuel production[J]. Journal of Analytical and Applied Pyrolysis, 2014, 105: 131-142. |
6 | BUDARIN Vitaliy L, SHUTTLEWORTH Peter S, DE BRUYN M, et al. The potential of microwave technology for the recovery, synthesis and manufacturing of chemicals from bio-wastes[J]. Catalysis Today, 2015, 239: 80-89. |
7 | 赵希强. 农作物秸秆微波热解实验及机理研究[D]. 济南: 山东大学, 2010. |
ZHAO Xiqiang. Experiment and mechanism research on microwave pyrolysis of agricultural straw[D]. Jinan: Shandong University, 2010. | |
8 | ZHANG Yaning, CHEN Paul, LIU Shiyu, et al. Effects of feedstock characteristics on microwave-assisted pyrolysis: a review[J]. Bioresource Technology. 2017, 230: 143-151. |
9 | KALOGIANNIS Konstantinos G, STEFANIDIS Stylianos D, LAPPAS Angelos A, et al. Catalyst deactivation, ash accumulation and bio-oil deoxygenation during ex situ catalytic fast pyrolysis of biomass in a cascade thermal-catalytic reactor system[J]. Fuel Processing Technology, 2019, 186: 99-109. |
10 | PAASIKAKALLIO Ville, LINDFORS Christian, KUOPPALA Eeva, et al. Product quality and catalyst deactivation in a four day catalytic fast pyrolysis production run[J]. Green Chemistry, 2014, 16(7): 3549-3559. |
11 | DAI Leilei, WANG Yunpu, LIU Yuhuan, et al. Microwave-assisted pyrolysis of formic acid pretreated bamboo sawdust for bio-oil production[J]. Environmental Research, 2020, 182: 108988. |
12 | CHEN N Y, DEGNAN T F, KOENIG L R. Liquid fuel from carbohydrates[J]. Chemtech, 1986, 16( 8) : 506-511. |
13 | COSTA Samantha Serra, MIRANDA Andréa Lobo, ANDRADE Bianca Bomfim, et al. Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae[J]. International Journal of Biological Macromolecules, 2018, 116: 552-562. |
14 | KIM Young-Min, Jungho JAE, KIM Beom-Sik, et al. Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts[J]. Energy Conversion and Management, 2017, 149: 966-973. |
15 | 郑志锋, 郑云武, 黄元波, 等. 木质生物质催化热解制备富烃生物油研究进展[J]. 林业工程学报, 2019, 4(2): 1-12. |
ZHENG Zhifeng, ZHENG Yunwu, HUANG Yuanbo, et al. Recent research progress on production of hydrocarbon-rich bio-oil through catalytic pyrolysis of lignocellulosic biomass[J]. Journal of Forestry Engineering, 2019, 4(2): 1-12. | |
16 | PARVEZ Ashak Mahmud, WU Tao, AFZAL Muhammad T, et al. Conventional and microwave-assisted pyrolysis of gumwood: a comparison study using thermodynamic evaluation and hydrogen production[J]. Fuel Processing Technology, 2019, 184: 1-11. |
17 | WANG Yunpu, TIAN Xiaojie, ZENG Zihong, et al. Catalytic co-pyrolysis of Alternanthera philoxeroides and peanut soapstock via a new continuous fast microwave pyrolysis system[J]. Waste Management, 2019, 88: 102-109. |
18 | ZHOU Yue, WANG Yunpu, FAN Liangliang, et al. Fast microwave-assisted catalytic co-pyrolysis of straw stalk and soapstock for bio-oil production[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 35-41. |
19 | Hae Won RYU, KIM Do Hui, Jungho JAE, et al. Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons[J]. Bioresource Technology, 2020, 310: 123473. |
20 | SURIAPPARAO Dadi V, VINU R, SHUKLA Arun, et al. Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation[J]. Bioresource Technology, 2020, 302: 122775. |
21 | BU Quan, CHEN Kun, XIE Wei, et al. Hydrocarbon rich bio-oil production, thermal behavior analysis and kinetic study of microwave-assisted co-pyrolysis of microwave-torrefied lignin with low density polyethylene[J]. Bioresource Technology, 2019, 291: 121860. |
22 | IDRIS Rubia, CHONG Cheng Tung, ASIK Jahimin A, et al. Optimization studies of microwave-induced co-pyrolysis of empty fruit bunches/waste truck tire using response surface methodology[J]. Journal of Cleaner Production, 2020, 244: 118649. |
23 | YU Zhenting, WANG Yunpu, JIANG Lin, et al. Microwave-assisted catalytic pyrolysis of Chinese tallow kernel oil for aromatic production in a downdraft reactor[J]. Journal of Analytical and Applied Pyrolysis, 2018, 133: 16-21. |
24 | LONG Feng, ZHANG Xiaolei, CAO Xincheng, et al. Mechanism investigation on the formation of olefins and paraffin from the thermochemical catalytic conversion of triglycerides catalyzed by alkali metal catalysts[J]. Fuel Processing Technology, 2020, 200: 106312. |
25 | 王允圃, 刘玉环, 阮榕生, 等. 不同碱金属乌桕油皂微波极化脱羧成烃类燃料的工艺[J]. 化工进展, 2014, 33(3): 638-642. |
WANG Yunpu, LIU Yuhuan, RUAN Rongsheng, et al. Microwave polarizing decarboxylation of different saponificated Chinese tallow seed oil for the preparation of renewable hydrocarbon fuel[J]. Chemical Industry and Engineering Progress, 2014, 33(3): 638-642. | |
26 | WANG Yunpu, WU Qiuhao, YANG Sha, et al. Microwave-assisted catalytic fast pyrolysis coupled with microwave-absorbent of soapstock for bio-oil in a downdraft reactor[J]. Energy Conversion and Management, 2019, 185: 11-20. |
27 | 缪晓玲, 吴庆余. 微藻生物质可再生能源的开发利用[J]. 可再生能源, 2003, 21(3): 13-16. |
MIAO Xiaoling, WU Qingyu. Exploitation of biomass renewable energy sources microalgae[J]. Renewable Energy Resources, 2003, 21(3): 13-16. | |
28 | WANG Nan, TAHMASEBI A, YU Jianglong, et al. A comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass[J]. Bioresource Technology, 2015, 190: 89-96. |
29 | HUANG Feng, TAHMASEBI Arash, Kristina MALIUTINAa, et al. Formation of nitrogen-containing compounds during microwave pyrolysis of microalgae: product distribution and reaction pathways[J]. Bioresource Technology, 2017, 245: 1067-1074. |
30 | 成珊, 乔慧坡, 王泉斌, 等. 污泥热解过程中典型钙盐对氮转化的影响[J]. 工程热物理学报, 2019, 40(7): 1688-1693. |
CHENG Shan, QIAO Huipo, WANG Quanbin, et al. Effect of typical calcium salt on nitrogen transformation during sewage sludge pyrolysis[J]. Journal of Engineering Thermophysics, 2019, 40(7): 1688-1693. | |
31 | 陈伟. 生物质富氮热解过程中氮的迁移转化及含氮目标产物调控研究[D]. 武汉: 华中科技大学, 2018. |
CHEN Wei. Research on nitrogen transformation and N-containing target products control during biomass nitrogen-enriched pyrolysis[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
32 | Su Shiung LAM, MAHARI Wan Adibah Wan, Yong Sik OK, et al. Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: recovery of cleaner liquid fuel and techno-economic analysis[J]. Renewable and Sustainable Energy Reviews, 2019, 115: 109359. |
33 | TIAN Yu, ZUO Wei, REN Zhenyuan, et al. Estimation of a novel method to produce bio-oil from sewage sludge by microwave pyrolysis with the consideration of efficiency and safety[J]. Bioresource Technology, 2011, 102(2): 2053-2061. |
34 | WANG Yunpu, DAI Leilei, WANG R, et al. Hydrocarbon fuel production from soapstock through fast microwave-assisted pyrolysis using microwave absorbent[J]. Journal of Analytical and Applied Pyrolysis, 2016, 119: 251-258. |
35 | WANG Yunpu, ZENG Zihong, TIAN Xiaojie, et al. Production of bio-oil from agricultural waste by using a continuous fast microwave pyrolysis system[J]. Bioresource Technology, 2018, 269: 162-168. |
36 | ZHOU Nan, ZHOU Junwen, DAI Leilei, et al. Syngas production from biomass pyrolysis in a continuous microwave assisted pyrolysis system[J]. Bioresource Technology, 2020, 314: 123756. |
37 | Ondřej MAŠEK, BUDARIN Vitaly, GRONNOW Mark, et al. Microwave and slow pyrolysis biochar-comparison of physical and functional properties [J]. Journal of Analytical and Applied Pyrolysis, 2013, 100: 41-48. |
38 | 张新伟, 王鑫, 陈平, 等. 复合微波吸收剂辅助生物质裂解制取生物油研究[J]. 当代化工, 2014, 43(8): 1407-1410. |
ZHANG Xinwei, WANG Xin, CHEN Ping, et al. Study on preparation of bio-oils by complex microwave absorbent-assisted pyrolysis of biomass[J]. Contemporary Chemical Industry, 2014, 43(8): 1407-1410. | |
39 | 樊永胜, 侯光喜, 熊永莲, 等. 复合吸波剂TiC/SiC诱导微波热解生物质试验研究[J]. 农业机械学报, 2020, 51(5): 331-338. |
FAN Yongsheng, HOU Guangxi, XIONG Yonglian, et al. Experiment study on microwave pyrolysis of biomass induced by compound absorber[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(5): 331-338. | |
40 | PATTIYA A. Catalytic pyrolysis[M]. Direct Thermochemical Liquefaction for Energy Applications. Cambridge: AmsterdamElsevier, 2018: 29-64. |
41 | 李攀, 王贤华, 龚维婷, 等. 金属盐添加剂对生物质微波热解特性的影响[J]. 农业机械学报, 2013, 44(6): 162-167. |
LI Pan, WANG Xianhua, GONG Weiting, et al. Effects of metal salt additives on biomass microwave pyrolysis characteristic[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(6): 162-167. | |
42 | WAN Yiqin, CHEN Pual, ZHANG Bo, et al. Microwave-assisted pyrolysis of biomass: catalysts to improve product selectivity[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(1): 161-167. |
43 | MOHAMED Badr A, ELLIS Naoko, KIM Chang Soo, et al. Microwave-assisted catalytic biomass pyrolysis: effects of catalyst mixtures[J]. Applied Catalysis B: Environmental, 2019, 253: 226-234. |
44 | 陈浩. 微波催化热解城市污水污泥过程生物气释放影响因素研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
CHEN Hao. Analysis of biogas releasing influence factors in microwave-induced catalytic pyrolysis of sewage sludge[D]. Harbin: Harbin Institute of Technology, 2013. | |
45 | 周杨. 不同催化剂对微波热解污泥产物分布规律的影响研究[D]. 深圳: 深圳大学, 2016. |
ZHOU Yang. Effect of different catalysts on the distribution of products from microwave pyrolysis sludge[D]. Shenzhen: Shenzhen University, 2016. | |
46 | 陈旭. 生物质富钙热解过程中生物油脱氧机理及调控机制研究[D]. 武汉: 华中科技大学, 2018. |
CHEN Xu. Study on the reaction mechanism and regulation method of bio-oil deoxygenation during biomass pyrolysis process with Ca-based additives[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
47 | MA Rui, HUANG Xiaofei, ZHOU Yang, et al. The effects of catalysts on the conversion of organic matter and bio-fuel production in the microwave pyrolysis of sludge at different temperatures[J]. Bioresource Technology, 2017, 238: 616-623. |
48 | FAN Liangliang, CHEN Pual, ZHANG Yaning, et al. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality[J]. Bioresource Technology, 2017, 225: 199-205. |
49 | YU Ying, YU Junqing, SUN Bing, et al. Influence of catalyst types on the microwave-induced pyrolysis of sewage sludge[J]. Journal of Analytical and Applied Pyrolysis, 2014, 106: 86-91. |
50 | DAI Leilei, FAN Liangliang, DUAN Dengle, et al. Production of hydrocarbon-rich bio-oil from soapstock via fast microwave-assisted catalytic pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125: 356-362. |
51 | KARNJANAKOM Surachai, BAYU Asep, HAO Xiaogang, et al. Selectively catalytic upgrading of bio-oil to aromatic hydrocarbons over Zn, Ce or Ni-doped mesoporous rod-like alumina catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2016, 421: 235-244. |
52 | ZHANG Bo, ZHONG Zhaoping, LI Tong, et al. Bio-oil production from sequential two-step microwave-assisted catalytic fast pyrolysis of water hyacinth using Ce-doped γ-Al2O3/ZrO2 composite mesoporous catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2018, 132: 143-150. |
53 | NISHU, LIU Ronghou, Maksudur RAHMAN M, et al. A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: focus on structure[J]. Fuel Processing Technology, 2020, 199: 106301. |
54 | Jungho JAE, TOMPSETT Geoffrey A, FOSTER Andrew J, et al. Investigation into the shape selectivity of zeolite catalysts for biomass conversion[J]. Journal of Catalysis, 2011, 279(2): 257-268. |
55 | 辛子扬, 葛立超, 冯红翠, 等. 生物质微波热解利用技术综述[J]. 热力发电, 2019, 48(7): 19-31. |
XIN Ziyang, GE Lichao, FENG Hongcui, et al. Application of microwave technology in biomass pyrolysis: a review[J]. Thermal Power Generation, 2019, 48(7): 19-31. | |
56 | WANG Yunpu, WU Qiuhao, DUAN Dengle, et al. Ex-situ catalytic upgrading of vapors from fast microwave-assisted co-pyrolysis of Chromolaena odorata and soybean soapstock[J]. Bioresource Technology, 2018, 261: 306-312. |
57 | 杨明法. 生物质催化热解制取高选择性低碳烯烃产物的机理研究[D]. 武汉: 华中科技大学, 2018. |
YANG Mingfa. Study on the mechanism of biomass catalytic pyrolysis to produce high selectivity light olefins[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
58 | LI Xiaohua, DONG Liangxiu, ZHANG Jin, et al. In-situ catalytic upgrading of biomass-derived vapors using HZSM-5 and MCM-41: effects of mixing ratios on bio-oil preparation[J]. Journal of the Energy Institute, 2017, 92(1): 136-143. |
59 | ZHANG Bo, ZHONG Zhaoping, CHEN Paul, et al. Microwave-assisted catalytic fast co-pyrolysis of Ageratina adenophora and kerogen with CaO and ZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2017, 127: 246-257. |
60 | HERA Iftikhar, MUHAMMAD Zeeshan, SAEED Iqbalet al. co-pyrolysis of sugarcane bagasse and polystyrene with ex-situ catalytic bed of metal oxides/HZSM-5 with focus on liquid yield[J]. Bioresource Technology, 2019, 289: 121647. |
61 | WU Qiuhao, WANG Yunpu, JIANG Lin, et al. Microwave-assisted catalytic upgrading of co-pyrolysis vapor using HZSM-5 and MCM-41 for bio-oil production: co-feeding of soapstock and straw in a downdraft reactor[J]. Bioresource Technology, 2020, 299: 122611. |
62 | ZHANG Bo, ZHANG Jing, ZHONG Zhaoping, et al. Conversion of poultry litter into bio-oil by microwave-assisted catalytic fast pyrolysis using microwave absorbent and hierarchical ZSM-5/MCM-41 catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2018, 130: 233-240. |
63 | 孙红. 多级孔ZSM-5分子筛的制备研究进展[J]. 化工管理, 2019(4): 78-80. |
SUN Hong. Progress in preparation of hierarchical porous ZSM-5[J]. Chemical Enterprise Management, 2019(4): 78-80. | |
64 | QIAO Kai, SHI Xu, ZHOU Feng, et al. Catalytic fast pyrolysis of cellulose in a microreactor system using hierarchical ZSM-5 zeolites treated with various alkalis[J]. Applied Catalysis A: General, 2017, 547: 274-282. |
65 | LI Zhaoying, ZHONG Zhaoping, ZHANG Bo, et al. Effect of alkali-treated HZSM-5 zeolite on the production of aromatic hydrocarbons from microwave assisted catalytic fast pyrolysis (MACFP) of rice husk[J]. Science of the Total Environment, 2020, 703:134605. |
66 | BHOI P R, OUEDRAOGO A S, SOLOIU V, et al. Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis[J]. Renewable and Sustainable Energy Reviews, 2020, 121: 109676. |
67 | ZHENG Yunwu, WANG Fei, YANG Xiaoqin, et al. Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2017, 126: 169-179. |
68 | XIE Wei, LIANG Jianghui, MORGAN H M, et al. Ex-situ catalytic microwave pyrolysis of lignin over Co/ZSM-5 to upgrade bio-oil[J]. Journal of Analytical and Applied Pyrolysis, 2018, 132: 163-170. |
69 | FANCHIANG Weiliang, LIN Yuchuan. Catalytic fast pyrolysis of furfural over H-ZSM-5 and Zn/H-ZSM-5 catalysts[J]. Applied Catalysis A: General, 2012, 419/420: 102-110. |
70 | WANG Lu, LEI Hanwu, BU Quan, et al. Aromatic hydrocarbons production from ex situ catalysis of pyrolysis vapor over zinc modified ZSM-5 in a packed-bed catalysis coupled with microwave pyrolysis reactor[J]. Fuel, 2014, 129: 78-85. |
71 | 王达锐. ZSM-5分子筛孔道和结构多级化的方法及其催化性能研究[D]. 上海: 华东师范大学, 2016. |
WANG Darui. New methods for preparing hierarchical porous and structured catalysts and their application [D]. Shanghai: East China Normal University, 2016. | |
72 | DU Haoran, ZHONG Zhaoping, ZHANG Bo, et al. Comparative study on pyrolysis of bamboo in microwave pyrolysis-reforming reaction by binary compound impregnation and chemical liquid deposition modified HZSM-5[J]. Journal of Environmental Sciences, 2020, 94: 186-196. |
73 | BA Housseinou, LIU Yuefeng, MU Xiaoke, et al. Macroscopic nanodiamonds/β-SiC composite as metal-free catalysts for steam-free dehydrogenation of ethylbenzene to styrene[J]. Applied Catalysis A, 2015, 499: 217-226. |
74 | ZHOU Nan, LIU Shiyu, ZHANG Yaning, et al. Silicon carbide foam supported ZSM-5 composite catalyst for microwave-assisted pyrolysis of biomass[J]. Bioresource Technology, 2018, 267: 257-264. |
75 | JIANG Lin, WANG Yunpu, DAI Leilei, et al. Co-pyrolysis of biomass and soapstock in a downdraft reactor using a novel ZSM-5/SiC composite catalyst[J]. Bioresource Technology, 2019, 279: 202-208. |
76 | YU Zhenting, JIANG Lin, WANG Yunpu, et al. Catalytic pyrolysis of woody oil over SiC foam-MCM41 catalyst for aromatic-rich bio-oil production in a dual microwave system[J]. Journal of Cleaner Production, 2020, 255: 120179. |
77 | KUNWAR Bidhya, MOSER Bryan R, CHANDRASEKARAN Sriraam R, et al. Catalytic and thermal depolymerization of low value post-consumer high density polyethylene plastic[J]. Energy, 2016, 111: 884-892. |
78 | DING Kuan, LIU Shasha, HUANG Yong, et al. Catalytic microwave-assisted pyrolysis of plastic waste over NiO and HY for gasoline-range hydrocarbons production[J]. Energy Conversion and Management, 2019, 196: 1316-1325. |
79 | Thanh-An NGO, KIM Jinsoo, KIM Sun Kuk, et al. Pyrolysis of soybean oil with H-ZSM5 (proton-exchange of zeolite socony mobil# 5) and MCM41 (mobil composition of matter No. 41) catalysts in a fixed-bed reactor[J]. Energy, 2010, 35(6): 2723-2728. |
80 | DAI Leilei, ZENG Zihong, TIAN Xiaojie, et al. Microwave-assisted catalytic pyrolysis of torrefied corn cob for phenol-rich bio-oil production over Fe modified bio-char catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2019, 143: 104691. |
81 | AN Yang, TAHMASEBI Arsh, ZHAO Xiaohui, et al. Catalytic reforming of palm kernel shell microwave pyrolysis vapors over iron-loaded activated carbon: enhanced production of phenol and hydrogen[J]. Bioresource Technology, 2020, 306: 123111. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[13] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[14] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[15] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |