化工进展 ›› 2021, Vol. 40 ›› Issue (6): 3172-3180.DOI: 10.16085/j.issn.1000-6613.2020-1327
收稿日期:
2020-07-13
修回日期:
2021-01-10
出版日期:
2021-06-06
发布日期:
2021-06-22
通讯作者:
许思传
作者简介:
刘鹏程(1993—),男,博士研究生,主要研究方向为燃料电池冷启动。E-mail:基金资助:
Received:
2020-07-13
Revised:
2021-01-10
Online:
2021-06-06
Published:
2021-06-22
Contact:
XU Sichuan
摘要:
质子交换膜燃料电池(PEMFC)电堆动态响应特性对PEMFC电堆的耐久性和可靠性具有很大影响。本文试验考察了PEMFC电堆在动态工况下的输出性能、单电池电压均衡性变化和动态响应特性。结果表明,在整个动态运行工况下,电堆运行良好,进出口冷却液温差小于5℃。电流阶跃变化时电堆电压均衡性出现突增变化,同时随着电流的增大,稳态时电堆均衡性变差。在超负荷(200A)运行工况下,电堆各单电池之间输出差异变大,均衡性持续变差,电堆中间和前端单电池电压明显降低。此外,在整个动态响应过程中电流阶跃上升时的电压最大下冲值比电流阶跃下降时的电压最大上调量大,但输出电压能在10s内达到相对稳定的状态(电压波动率<0.02)。通过该研究,以期为实际车载电堆运行和控制优化提供参考。
中图分类号:
刘鹏程, 许思传. PEMFC电堆动态工况响应性能试验[J]. 化工进展, 2021, 40(6): 3172-3180.
LIU Pengcheng, XU Sichuan. Experimental study on dynamic response performance for PEMFC stack[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3172-3180.
参数 | 值 | 参数 | 值 |
---|---|---|---|
单电池数量/片 | 30 | 扩散层孔隙率(阳/阴极) | 0.78/0.78 |
质子交换膜 | Nafion 211 | 扩散层厚度(阳/阴极)/mm | 0.17/0.17 |
有效反应截面积/cm2 | 270 | 双极板材料 | 316L不锈钢 |
催化层孔隙率(阳/阴极) | 0.5/0.5 | 双极板厚度/mm | 0.5 |
催化层厚度(阳/阴极)/mm | 0.005/0.01 | 端板厚度/mm | 25 |
表1 试验电堆详细参数
参数 | 值 | 参数 | 值 |
---|---|---|---|
单电池数量/片 | 30 | 扩散层孔隙率(阳/阴极) | 0.78/0.78 |
质子交换膜 | Nafion 211 | 扩散层厚度(阳/阴极)/mm | 0.17/0.17 |
有效反应截面积/cm2 | 270 | 双极板材料 | 316L不锈钢 |
催化层孔隙率(阳/阴极) | 0.5/0.5 | 双极板厚度/mm | 0.5 |
催化层厚度(阳/阴极)/mm | 0.005/0.01 | 端板厚度/mm | 25 |
1 | 刘灿, 许思传, 刘鹏程, 等.质子交换膜燃料电池停机吹扫研究进展[J]. 同济大学学报(自然科学版), 2019, 47(S1): 88-95. |
LIU C, XU S C, LIU P C, et al. Review of research progress on shutdown purge of proton exchange membrane fuel cell[J]. Journal of Tongji University (Natural Science), 2019, 47(S1): 88-95. | |
2 | 岳利可, 王世学, 李林军. 质子交换膜燃料电池冷启动研究进展[J]. 化工进展, 2017, 36(9): 3257-3265. |
YUE L K, WANG S X, LI L J. Research progress of cold start of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3257-3265. | |
3 | CHEN H C, PEI P C, SONG M C. Lifetime prediction and the economic lifetime of proton exchange membrane fuel cells[J]. Applied Energy, 2015, 142: 154-163. |
4 | KIM Y B, KANG S J. Time delay control for fuel cells with bidirectional DC/DC converter and battery[J]. International Journal of Hydrogen Energy, 2010, 35(16): 8792-8803. |
5 | TANG Y, YUAN W, PAN M Q, et al. Experimental investigation on the dynamic performance of a hybrid PEM fuel cell/battery system for lightweight electric vehicle application [J]. Applied Energy, 2011, 88(1): 68-76. |
6 | WANG C Y. Fundamental models for fuel cell engineering[J]. Cheminform, 2004, 35(50): 4727-4766. |
7 | SHAN Y Y, CHOE S Y. A high dynamic PEM fuel cell model with temperature effects[J]. Journal of Power Sources, 2005, 145(1): 30-39. |
8 | ZHANG C, LIU Z, ZHOU W, et al. Dynamic performance of a high-temperature PEM fuel cell: an experimental study[J]. Energy, 2015, 90(2): 1949-1955. |
9 | LU L, XU H, ZHAO H, et al. Dynamic response performance of proton exchange membrane fuel cell stack with Pt/C-RuO2·xH2O electrode[J]. Journal of Power Sources, 2013, 242(15): 99-105. |
10 | 陈会翠.影响燃料电池寿命的动态响应分析及经济性评价[D]. 北京: 清华大学, 2015. |
CHEN H C. Analysis of the dynamic response affecting the fuel cell lifetime and economic evaluation of the fuel cell [D]. Beijing: Tsinghua University, 2015. | |
11 | CHO J, PARK J, OH H, et al. Analysis of the transient response and durability characteristics of a proton exchange membrane fuel cell with different micro-porous layer penetration thicknesses[J]. Applied Energy, 2013, 111: 300-309. |
12 | 曹涛锋, 丁靖, 母玉同, 等. 质子交换膜燃料电池动态响应性能实验研究[J]. 工程热物理学报, 2016, 37(4): 835-839. |
CAO T F, DING J, MU Y T, et al. Experimental study on the dynamic performance of a proton exchange membrane fuel cell[J]. Journal of Engineering Thermophysics, 2016, 37(4): 835-839. | |
13 | CHO J, KIM H, MIN K. Transient response of a unit proton-exchange membrane fuel cell under various operating conditions[J]. Journal of Power Sources, 2008, 185(1): 118-128. |
14 | 王诚,毛宗强,谢晓峰,等.PEM燃料电池堆动态特性研究[J].化工学报, 2004, 55(S1): 245-248. |
WANG C, MAO Z Q, XIE X F, et al. Dynamic characteristics of PEM fuel cell stack[J]. Journal of Chemical Industry and Engineering, 2004, 55(S1): 245-248. | |
15 | KIM M S, KIM D K. Parametric study on dynamic heat and mass transfer response in polymer electrolyte membrane fuel cell for automotive applications[J]. Applied Thermal Engineering, 2020, 167: 114729-114740. |
16 | 华周发, 余意, 潘牧. 动态响应对质子交换膜燃料电池性能影响研究[J]. 电源技术, 2011, 35(11): 1358-1360. |
HUA Z F, YU Y, PAN M. Effect of dynamic response on performance of proton exchange membrane fuel cell[J]. Chinese Journal of Power Sources, 2011, 35(11): 1358-1360. | |
17 | KIM B, CHA D, KIM Y. The effects of air stoichiometry and air excess ratio on the transient response of a PEMFC under load change conditions[J]. Applied Energy, 2015, 138: 143-149. |
18 | TANG Y, YUAN W, PAN M Q, et al. Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes[J]. Applied Energy, 2010, 87(4): 1410-1417. |
19 | 张竹茜, 贾力. 质子交换膜燃料电池动态特性实验研究[J]. 工程热物理学报, 2009, 30(8): 1399-1401. |
ZHANG Z Q, JIA L. Experimental study of PEM fuel cell dynamic behavior[J]. Journal of Engineering Thermophysics, 2009, 30(8): 1399-1401. | |
20 | 陈会翠,裴普成.质子交换膜(PEM)燃料电池变载过程动态模型[J].清华大学学报(自然科学版), 2014, 54(10): 1298-1303. |
CHEN H C, PEI P C. Dynamic model of a proton exchange membrane(PEM) fuel cell during load changes[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(10): 1298-1303. | |
21 | HE Y X, CHEN H C, QU B W, et al. Analysis of proton exchange membrane fuel cell reactant gas dynamic response and distribution quality[J]. Energy Procedia, 2018, 152: 667-672. |
22 | CORBO P, MIGLIARDINI F, VENERI O. An experimental study of a PEM fuel cell power train for urban bus application[J]. Journal of Power Sources, 2008, 181(2): 363-370. |
23 | OHEDA B, OMAR S C, CHAI A, et al. Experimental analysis of the dynamic performance of pem fuel cell under various load changes[C]//2010 International Conference on Mechanical and Electrical Technology (ICMET 2010), Singapore: IEEE, 2010: 604-609. |
24 | MOHAMED W A N W, TALIB S F A, ZAKARIA I A, et al. Effect of dynamic load on the temperature profiles and cooling response time of a proton exchange membrane fuel cell[J]. Journal of the Energy Institute, 2018, 91(3): 349-357. |
25 | 华周发.质子交换膜燃料电池动态响应研究[D].武汉: 武汉理工大学, 2010. |
HUA Z F. Study on dynamic response of proton exchange membrane fuel cell[D]. Wuhan: WuhanUniversity of Technology, 2010. | |
26 | WANG X K, WANG S B, ChEN S T, et al. Dynamic response of proton exchange membrane fuel cell under mechanical vibration[J]. International Journal of Hydrogen Energy, 2016, 41(36): 16287-16295. |
27 | LIN R, LI B, HOU Y P, et al. Investigation of dynamic driving cycle effect on performance degradation and micro-structure change of PEM fuel cell[J]. International Journal of Hydrogen Energy, 2009, 34(5): 2369-2376. |
28 | LIN R, XIONG F, TANG W C, et al. Investigation of dynamic driving cycle effect on the degradation of proton exchange membrane fuel cell by segmented cell technology[J]. Journal of Power Sources, 2014, 260: 150-158. |
29 | 汪飞杰, 杨代军, 张浩, 等. 1.5kW质子交换膜燃料电池堆动态工况响应特性[J]. 化工学报, 2013, 64(4): 1380-1386. |
WANG F J, YANG D J, ZHANG H, et al. Response feature of a 1.5kW proton exchange membrane fuel cell stack for dynamic cycle[J]. CIESC Journal, 2013, 64(4): 1380-1386. | |
30 | HOU Y P, YANG Z H, FANG X. An experimental study on the dynamic process of PEM fuel cell stack voltage[J]. Renewable Energy, 2011, 36(1): 325-329. |
31 | JIAN Q F, ZHAO Y, WANG H T. An experimental study of the dynamic behavior of a 2kW proton exchange membrane fuel cell stack under various loading conditions[J]. Energy, 2015, 80: 740-745. |
32 | CHO J, KIM H, MIN K. Transient response of a unit proton-exchange membrane fuel cell under various operating conditions[J]. Journal of Power Sources, 2008, 185(1): 118-128. |
33 | JUNG G B, LO K F, SU A, et al. Experimental evaluation of an ambient forced-feed air-supply PEM fuel cell[J]. International Journal of Hydrogen Energy, 2008, 33(12): 2980-2985. |
34 | O’Hayre RYAN. 燃料电池基础[M]. 王晓红, 黄宏, 等, 译. 北京: 电子工业出版社, 2007: 32. |
O’Hayre RYAN. Fuel cell fundamentals[M]. WANG X H, HUANG H, et al. Trans. Beijing: Publishing House of Electronics Industry, 2007: 32. | |
35 | MIGLIARDINI F, PALMA T M D, GAELE M F, et al. Cell voltage analysis of a 6kW polymeric electrolyte fuel cell stack designed for hybrid power systems [J]. Materials Today: Proceedings, 2019, 10(2): 393-399. |
36 | HOU Y P, YANG Z H, WAN G. An improved dynamic voltage model of PEM fuel cell stack[J]. International Journal of Hydrogen Energy, 2010, 35(20): 11154-11160. |
[1] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[2] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[3] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[4] | 马哲杰, 张文励, 赵炫凯, 李平. PEMFC阴极催化层氧传质阻力影响的研究进展[J]. 化工进展, 2023, 42(6): 2860-2873. |
[5] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[6] | 于海强, 郭泉忠, 杜克勤, 汪川. 脉冲电沉积PbO2涂层在PEMFC不锈钢双极板上的应用[J]. 化工进展, 2023, 42(2): 917-924. |
[7] | 高帷韬, 殷屺男, 涂自强, 龚繁, 李阳, 徐宏, 王诚, 毛宗强. 金属有机框架材料中的质子传导及其在质子交换膜中的应用[J]. 化工进展, 2022, 41(S1): 260-268. |
[8] | 陈哲坤, 潘伟童, 姚顶松, 丁路, 王辅臣. 质子交换膜燃料电池微孔层浆液微观结构与流变性[J]. 化工进展, 2022, 41(7): 3808-3815. |
[9] | 潘文政, 纪志永, 汪婧, 李淑明, 黄智辉, 郭小甫, 刘杰, 赵颖颖, 袁俊生. 微生物燃料电池处理偶氮含盐废水的产电性能和降解过程[J]. 化工进展, 2022, 41(6): 3306-3313. |
[10] | 张东, 张瑞, 张彬, 安周建, 雷彻. 基于质子交换膜燃料电池的冷热电联产系统研究进展[J]. 化工进展, 2022, 41(3): 1608-1621. |
[11] | 高帷韬, 雷一杰, 张勋, 胡晓波, 宋平平, 赵卿, 王诚, 毛宗强. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555. |
[12] | 陈诗雨, 许志成, 杨婧, 徐浩, 延卫. 微生物燃料电池在废水处理中的研究进展[J]. 化工进展, 2022, 41(2): 951-963. |
[13] | 冯占雄, 汪云, 马强, 张创, 王诚. 连续管道微波技术制备Pt/C催化剂及其氧还原性能[J]. 化工进展, 2022, 41(12): 6377-6384. |
[14] | 杜新, 范进伟, 郭丽君, 王金龙. 用非均匀团聚体模型模拟燃料电池老化过程[J]. 化工进展, 2022, 41(11): 5755-5760. |
[15] | 王盟, 刘莉莉, 李娜, 胡朝霞, 陈守文. 磺酸修饰的金刚石掺杂磺化聚芳醚砜质子交换膜的制备与性能[J]. 化工进展, 2022, 41(10): 5645-5652. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 754
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 698
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |