化工进展 ›› 2021, Vol. 40 ›› Issue (6): 3020-3033.DOI: 10.16085/j.issn.1000-6613.2020-2433
收稿日期:
2020-12-03
修回日期:
2020-01-20
出版日期:
2021-06-06
发布日期:
2021-06-22
通讯作者:
陆安慧
作者简介:
侯璐(1995—),女,硕士研究生,研究方向为炭基储能电极材料。E-mail:基金资助:
HOU Lu(), HU Youren, LI Wencui, DONG Xiaoling, LU Anhui()
Received:
2020-12-03
Revised:
2020-01-20
Online:
2021-06-06
Published:
2021-06-22
Contact:
LU Anhui
摘要:
多孔炭在电化学储能器件中具有不可或缺的作用。本文主要介绍了富氧多孔炭材料的物理化学特性、表面含氧官能团的种类及表征方法;总结了富氧多孔炭常见的合成方法并分析了各种方法的优缺点;以超级电容器和锂/钠离子电池为例,阐述了近年来富氧多孔炭材料在储能应用方面的研究进展,探讨了含氧官能团在储能过程中的作用机理;指出了富氧多孔炭应用于电极材料时高比容量与高导电性能相互制约的问题,提出理性设计多孔炭结构中含氧官能团的类型及数量,可以在保持多孔炭电化学稳定性的同时,为多孔炭提供丰富的氧化还原活性位,提高其与电解质的亲和性,从而提升储能器件的能量密度;并展望了含氧官能团原位表征技术的开发与材料先进结构组分的设计等富氧多孔炭储能电极的未来发展方向。
中图分类号:
侯璐, 胡友仁, 李文翠, 董晓玲, 陆安慧. 富氧多孔炭的合成及其在电化学储能中的作用[J]. 化工进展, 2021, 40(6): 3020-3033.
HOU Lu, HU Youren, LI Wencui, DONG Xiaoling, LU Anhui. Synthesis and electrochemical energy storage effect of oxygen-rich porous carbon[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3020-3033.
1 | ZHAI Y, DOU Y, ZHAO D, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials, 2011, 23(42): 4828-4850. |
2 | HAN P X, XU G J, HAN X Q, et al. Lithium ion capacitors in organic electrolyte system: scientific problems, material development, and key technologies[J]. Advanced Energy Materials, 2018, 8(26): 1801243. |
3 | KANG D M, LIU Q L, GU J J, et al. “Egg-box” -assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors[J]. ACS Nano, 2015, 9(11): 11225-11233. |
4 | LI Z N, GADIPELLI S, LI H C, et al. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage[J]. Nature Energy, 2020, 5(2): 160-168. |
5 | DUTTA S, BHAUMIK A, WU K C W. Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications[J]. Energy Environ. Sci., 2014, 7(11): 3574-3592. |
6 | ZHI J, ZHAO W, LIU X Y, et al. Highly conductive ordered mesoporous carbon based electrodes decorated by 3D graphene and 1D silver nanowire for flexible supercapacitor[J]. Advanced Functional Materials, 2014, 24(14): 2013-2019. |
7 | SUN F, LIU X Y, WU H B, et al. In situ high-level nitrogen doping into carbon nanospheres and boosting of capacitive charge storage in both anode and cathode for a high-energy 4.5V full-carbon lithium-ion capacitor[J]. Nano Letters, 2018, 18(6): 3368-3376. |
8 | BYON H R, GALLANT B M, LEE S W, et al. Role of oxygen functional groups in carbon nanotube/graphene freestanding electrodes for high performance lithium batteries[J]. Advanced Functional Materials, 2013, 23(8): 1037-1045. |
9 | YUAN S T, HUANG X H, WANG H, et al. Structure evolution of oxygen removal from porous carbon for optimizing supercapacitor performance[J]. Journal of Energy Chemistry, 2020, 51: 396-404. |
10 | LU Y, HOU X, MIAO L, et al. Cyclohexanehexone with ultrahigh capacity as cathode materials for lithium-ion batteries[J]. Angewandte Chemie: International Edition, 2019, 58(21): 7020-7024. |
11 | KUNDU S, WANG Y M, XIA W, et al. Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR study[J]. The Journal of Physical Chemistry C, 2008, 112(43): 16869-16878. |
12 | 张苏. 基于液相氧化法的石墨烯基功能材料的设计[D]. 北京: 北京化工大学, 2016. |
ZHANG Su. Preparation of graphene-based functional materials by liquid phase chemical oxidation[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
13 | ZHAO G Y, CHEN C, YU D F, et al. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors[J]. Nano Energy, 2018, 47: 547-555. |
14 | DIMIEV A M, ALEMANY L B, TOUR J M. Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model[J]. ACS Nano, 2013, 7(1): 576-588. |
15 | LEE S W, GALLANT B M, LEE Y, et al. Self-standing positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries[J]. Energy Environ. Sci., 2012, 5(1): 5437-5444. |
16 | KANGASNIEMI K H, CONDIT D A, JARVI T D. Characterization of Vulcan electrochemically oxidized under simulated PEM fuel cell conditions[J]. Journal of the Electrochemical Society, 2004, 151(4): 125-132. |
17 | KRISHNAMOORTHY K, VEERAPANDIAN M, YUN K, et al. The chemical and structural analysis of graphene oxide with different degrees of oxidation[J]. Carbon, 2013, 53: 38-49. |
18 | BRENDER P, GADIOU R, RIETSCH J C, et al. Characterization of carbon surface chemistry by combined temperature programmed desorption with in situ X-ray photoelectron spectrometry and temperature programmed desorption with mass spectrometry analysis[J]. Analytical Chemistry, 2012, 84(5): 2147-2153. |
19 | ZHOU J H, SUI Z J, ZHU J, et al. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon, 2007, 45(4): 785-796. |
20 | 李娜, 朱健, 查庆芳. 活性炭表面基团的定性和定量分析[J]. 高等学校化学学报, 2012, 33(3): 548-554. |
LI Na, ZHU Jian, ZHA Qingfang. Quantitative and qualitative analyses of oxygen-containing surface functional groups on activated carbon[J]. Chemical Journal of Chinese Universities, 2012, 33(3): 548-554. | |
21 | BOEHM H P. Surface oxides on carbon and their analysis: a critical assessment[J]. Carbon, 2002, 40(2): 145-149. |
22 | 毛磊, 童仕唐, 王宇. 对用于活性炭表面含氧官能团分析的Boehm滴定法的几点讨论[J]. 炭素技术, 2011, 30(2): 17-19. |
MAO Lei, TONG Shitang, WANG Yu. Discussion on the Boehm titration method used in analysis of surface oxygen functional groups on activated carbon[J]. Carbon Techniques, 2011, 30(2): 17-19. | |
23 | TANAKA S, FUJIMOTO H, DENAYER J F M, et al. Surface modification of soft-templated ordered mesoporous carbon for electrochemical supercapacitors[J]. Microporous and Mesoporous Materials, 2015, 217: 141-149. |
24 | LEE B, LEE C, LIU T Y, et al. Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized few-walled carbon nanotubes for rapid electrochemical energy storage[J]. Nanoscale, 2016, 8(24): 12330-12338. |
25 | LIU T Y, DAVIJANI A A B, SUN J Y, et al. Hydrothermally oxidized single-walled carbon nanotube networks for high volumetric electrochemical energy storage[J]. Small, 2016, 12(25): 3423-3431. |
26 | LOTA G, KRAWCZYK P, LOTA K, et al. The application of activated carbon modified by ozone treatment for energy storage[J]. Journal of Solid State Electrochemistry, 2016, 20(10): 2857-2864. |
27 | LIU T, KAVIAN R, KIM I, et al. Self-assembled, redox-active graphene electrodes for high-performance energy storage devices[J]. The Journal of Physical Chemistry Letters, 2014, 5(24): 4324-4330. |
28 | TABTI Z, RUIZ-ROSAS R, QUIJADA C, et al. Tailoring the surface chemistry of activated carbon cloth by electrochemical methods[J]. ACS Applied Materials & Interfaces, 2014, 6(14): 11682-11691. |
29 | WANG W, LIU W, ZENG Y, et al. A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth[J]. Advanced Materials, 2015, 27(23): 3572-3578. |
30 | WANG Y, CHANG Z, ZHANG Z, et al. A facile approach to improve electrochemical capacitance of carbons by in situ electrochemical oxidation[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 5999-6008. |
31 | LIU B, LIU Y J, CHEN H B, et al. Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors[J]. Journal of Power Sources, 2017, 341: 309-317. |
32 | WANG Can, WANG Dianyu, ZHENG Shuang, et al. Facile self-templating melting route preparation of biomass-derived hierarchical porous carbon for advanced supercapacitors[J]. Chemical Research in Chinese Universities, 2018, 34(6): 983-988. |
33 | LIN Y, CHEN Z Y, YU C Y, et al. Heteroatom-doped sheet-like and hierarchical porous carbon based on natural biomass small molecule peach gum for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3389-3403. |
34 | SANCHEZ-SANCHEZ A, IZQUIERDO M T, MATHIEU S, et al. Outstanding electrochemical performance of highly N- and O-doped carbons derived from pine tannin[J]. Green Chemistry, 2017, 19(11): 2653-2665. |
35 | LIU T Y, LEE B, LEE M J, et al. Improved capacity of redox-active functional carbon cathodes by dimension reduction for hybrid supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(8): 3367-3375. |
36 | ZHANG L, SHEN X Y, AI K L, et al. sp2 C-dominant O-doped hierarchical porous carbon for supercapacitor electrodes[J]. ACS Applied Energy Materials, 2019, 2(10): 7009-7018. |
37 | ZHANG Y, QU T T, XIANG K, et al. In situ formation/carbonization of quinone-amine polymers towards hierarchical porous carbon foam with high faradaic activity for energy storage[J]. Journal of Materials Chemistry A, 2018, 6(5): 2353-2359. |
38 | SONG Z Y, MIAO L, LI L C, et al. A universal strategy to obtain highly redox-active porous carbons for efficient energy storage[J]. Journal of Materials Chemistry A, 2020, 8(7): 3717-3725. |
39 | OH Y J, YOO J J, KIM Y I, et al. Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor[J]. Electrochimica Acta, 2014, 116: 118-128. |
40 | CHEN Z, CAO R, GE Y H, et al. N- and O-doped hollow carbonaceous spheres with hierarchical porous structure for potential application in high-performance capacitance[J]. Journal of Power Sources, 2017, 363: 356-364. |
41 | WEI W, LIU W, CHEN Z J, et al. Template-assisted construction of N, O-doped mesoporous carbon nanosheet from hydroxyquinoline-Zn complex for high-performance aqueous symmetric supercapacitor[J]. Applied Surface Science, 2020, 509: 144921. |
42 | TANG C G, LIU Y J, YANG D G, et al. Oxygen and nitrogen co-doped porous carbons with finely-layered schistose structure for high-rate-performance supercapacitors[J]. Carbon, 2017, 122: 538-546. |
43 | WANG C J, WU D P, WANG H J, et al. A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity[J]. Journal of Materials Chemistry A, 2018, 6(3): 1244-1254. |
44 | GUO C X, LI N, JI L L, et al. N- and O-doped carbonaceous nanotubes from polypyrrole for potential application in high-performance capacitance[J]. Journal of Power Sources, 2014, 247: 660-666. |
45 | LIANG Z, ZHANG L, LIU H, et al. Formation of monodisperse carbon spheres with tunable size via triblock copolymer-assisted synthesis and their capacitor properties[J]. Nanoscale Res. Lett., 2019, 14(1): 124. |
46 | LU H, ZHUANG L Z, GADDAM R R, et al. Microcrystalline cellulose-derived porous carbons with defective sites for electrochemical applications[J]. Journal of Materials Chemistry A, 2019, 7(39): 22579-22587. |
47 | CHEN C, WANG H Y, XIAO Q G, et al. Porous carbon hollow rod for supercapacitors with high energy density[J]. Industrial & Engineering Chemistry Research, 2019, 58(48): 22124-22132. |
48 | DAI J D, WANG L L, XIE A, et al. A reactive template and confined self-activation strategy: 3D interconnected hierarchically porous N/O-doped carbon foam for enhanced supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 739-748. |
49 | LI J T, XIAO R, LI M, et al. Template-synthesized hierarchical porous carbons from bio-oil with high performance for supercapacitor electrodes[J]. Fuel Processing Technology, 2019, 192: 239-249. |
50 | ZHOU M, LI X Y, ZHAO H, et al. Combined effect of nitrogen and oxygen heteroatoms and micropores of porous carbon frameworks from Schiff-base networks on their high supercapacitance[J]. Journal of Materials Chemistry A, 2018, 6(4): 1621-1629. |
51 | LIU M R, ZHANG K J, SI M Y, et al. Three-dimensional carbon nanosheets derived from micro-morphologically regulated biomass for ultrahigh-performance supercapacitors[J]. Carbon, 2019, 153: 707-716. |
52 | YUAN C Q, LIU X H, JIA M Y, et al. Facile preparation of N- and O-doped hollow carbon spheres derived from poly(o-phenylenediamine) for supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(7): 3409-3415. |
53 | LEE S W, YABUUCHI N, GALLANT B M, et al. High-power lithium batteries from functionalized carbon-nanotube electrodes[J]. Nature Nanotechnology, 2010, 5(7): 531-537. |
54 | HA S H, JEONG Y S, LEE Y J. Free standing reduced graphene oxide film cathodes for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12295-12303. |
55 | XIONG D B, LI X F, SHAN H, et al. Controllable oxygenic functional groups of metal-free cathodes for high performance lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(21): 11376-11386. |
56 | WANG D W, SUN C H, ZHOU G M, et al. The examination of graphene oxide for rechargeable lithium storage as a novel cathode material[J]. Journal of Materials Chemistry A, 2013, 1(11): 3607-3612. |
57 | LIU T Y, KIM K C, KAVIAN R, et al. High-density lithium-ion energy storage utilizing the surface redox reactions in folded graphene films[J]. Chemistry of Materials, 2015, 27(9): 3291-3298. |
58 | KIM S, KIM K C, LEE S W, et al. Thermodynamic and redox properties of graphene oxides for lithium-ion battery applications: a first principles density functional theory modeling approach[J]. Physical Chemistry Chemical Physics, 2016, 18(30): 20600-20606. |
59 | LIU T Y, KIM K C, LEE B, et al. Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries[J]. Energy & Environmental Science, 2017, 10(1): 205-215. |
60 | LIU T, LEE B, KIM B G, et al. In situ polymerization of dopamine on graphene framework for charge storage applications[J]. Small, 2018, 14(34): e1801236. |
61 | PARK J H, LEE H J, CHO J Y, et al. Highly exfoliated and functionalized single-walled carbon nanotubes as fast-charging, high-capacity cathodes for rechargeable lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1322-1329. |
62 | BACHMAN J C, KAVIAN R, GRAHAM D J, et al. Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes[J]. Nat. Commun., 2015, 6: 7040. |
[1] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[2] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[3] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
[4] | 蔡江涛, 候刘华, 兰雨金, 张晨陈, 刘国阳, 朱由余, 张建兰, 赵世永, 张亚婷. 沥青基多孔炭材料的制备及在超级电容器中的应用进展[J]. 化工进展, 2023, 42(4): 1895-1906. |
[5] | 卓祖优, 宋生南, 黄明堦, 杨旋, 卢贝丽, 陈燕丹. 草酸钾-尿素协同活化法制备超大比表面积面粉基多级孔炭及其电化学储能应用[J]. 化工进展, 2023, 42(2): 925-933. |
[6] | 田甜, 雷西萍, 于婷, 樊凯, 宋晓琪, 朱航. 碳材料在柔性超级电容器中的研究进展[J]. 化工进展, 2023, 42(2): 884-896. |
[7] | 刘培慧, 刘宇喆, 李琳, 王少辉, 王同华. 具有多级孔道结构的高比表面多孔炭活化策略及VOCs吸附性能[J]. 化工进展, 2022, 41(S1): 613-621. |
[8] | 龙垠荧, 杨健, 管敏, 杨怡洛, 程正柏, 曹海兵, 刘洪斌, 安兴业. 木质素基材料在混合型超级电容器电极材料中的研究进展[J]. 化工进展, 2022, 41(9): 4855-4865. |
[9] | 徐虎, 郭泓凯, 柴昌盛, 郝相忠, 杨子元, 徐卫军. 碳纤维类材料用于电芬顿体系电极的研究现状[J]. 化工进展, 2022, 41(7): 3707-3718. |
[10] | 娄瑞, 刘钰, 田杰, 张亚男. 纳米木质素基多孔炭的制备及其电化学性能[J]. 化工进展, 2022, 41(6): 3170-3177. |
[11] | 王鲁元, 金春江, 陈惠敏, 程星星, 安东海, 张兴宇, 孙荣峰, 耿文广. 一步热解活化法制备纳米木质素基多孔炭材料[J]. 化工进展, 2022, 41(5): 2582-2592. |
[12] | 郭冠伦, 刘锐, 余洋洋, 汪云. 塑料衍生碳材料用于超级电容器的研究现状[J]. 化工进展, 2022, 41(2): 781-790. |
[13] | 杨妍, 刘国涛, 余庆慧, 李晓娟, 张颖. 多孔炭材料改性纳米零价铁的研究进展[J]. 化工进展, 2021, 40(S2): 198-202. |
[14] | 葛睿, 胡旭, 董灵玉, 李丹, 郝广平. 电化学耦合阴极二氧化碳还原与阳极氧化合成[J]. 化工进展, 2021, 40(9): 5132-5144. |
[15] | 朱晟, 彭怡婷, 闵宇霖, 刘海梅, 徐群杰. 电化学储能材料及储能技术研究进展[J]. 化工进展, 2021, 40(9): 4837-4852. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |