化工进展 ›› 2021, Vol. 40 ›› Issue (6): 3005-3019.DOI: 10.16085/j.issn.1000-6613.2020-2412
范文龙(), 李林哲, 薛志伟, 孟秀霞, 张津津, 于方永, 杨乃涛()
收稿日期:
2020-12-01
修回日期:
2021-03-01
出版日期:
2021-06-06
发布日期:
2021-06-22
通讯作者:
杨乃涛
作者简介:
范文龙(1996—),男,硕士研究生,研究方向为电催化膜反应器。E-mail:基金资助:
FAN Wenlong(), LI Linzhe, XUE Zhiwei, MENG Xiuxia, ZHANG Jinjin, YU Fangyong, YANG Naitao()
Received:
2020-12-01
Revised:
2021-03-01
Online:
2021-06-06
Published:
2021-06-22
Contact:
YANG Naitao
摘要:
电催化氮还原合成氨在常压下进行,能克服高耗能、高CO2排放等问题,是最有希望替代传统方法的新型技术之一。用于电催化合成氨反应的电解质材料按照工作原理和组成可以分为固体氧化物电解质、熔融盐电解质、聚合物膜电解质以及液体电解质等,工作温度依次降低。本文从电解质出发,综述了电催化合成氨工作原理、电极材料、生产速率和法拉第效率等方面的前沿理论和应用案例,指出了目前电催化氮还原合成氨领域面临着合成氨速率和法拉第效率低、电解质的质子传导效率不足、催化剂活性及稳定性不良等问题以及低温化的研究趋势,为深入探索电催化合成氨新方法提供理论支持和方向引导。
中图分类号:
范文龙, 李林哲, 薛志伟, 孟秀霞, 张津津, 于方永, 杨乃涛. 电催化合成氨研究进展[J]. 化工进展, 2021, 40(6): 3005-3019.
FAN Wenlong, LI Linzhe, XUE Zhiwei, MENG Xiuxia, ZHANG Jinjin, YU Fangyong, YANG Naitao. Research progress of electrocatalytic ammonia synthesis[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3005-3019.
1 | GIDDEY S, BADWAL S P S, KULKARNI A. Review of electrochemical ammonia production technologies and materials[J]. International Journal of Hydrogen Energy, 2013, 38(34): 14576-14594. |
2 | GUO X H, ZHU Y P, MA T Y. Lowering reaction temperature: electrochemical ammonia synthesis by coupling various electrolytes and catalysts[J]. Journal of Energy Chemistry, 2017, 26(6): 1107-1116. |
3 | HASNAT M A, KARIM M R, MACHIDA M. Electrocatalytic ammonia synthesis: role of cathode materials and reactor configuration[J]. Catalysis Communications, 2009, 10(15): 1975-1979. |
4 | AMAR I A, PETIT C T G, MANN G, et al. Electrochemical synthesis of ammonia from N2 and H2O based on (Li, Na, K)2CO3-Ce0.8Gd0.18Ca0.02O2-δ composite electrolyte and CoFe2O4 cathode[J]. International Journal of Hydrogen Energy, 2014, 39(9): 4322-4330. |
5 | CONG Q L, CHEN L, WANG X X, et al. Promotional effect of nitrogen-doping on a ceria unary oxide catalyst with rich oxygen vacancies for selective catalytic reduction of NO with NH3[J]. Chemical Engineering Journal, 2020, 379: 122302. |
6 | LAN R, IRVINE J T S, TAO S W. Ammonia and related chemicals as potential indirect hydrogen storage materials[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1482-1494. |
7 | KLINSRISUK S, IRVINE J T S. Electrocatalytic ammonia synthesis via a proton conducting oxide cell with BaCe0.5Zr0.3Y0.16Zn0.04O3-δ electrolyte membrane[J]. Catalysis Today, 2017, 286: 41-50. |
8 | AMAR I A, PETIT C T G, ZHANG L, et al. Electrochemical synthesis of ammonia based on doped-ceria-carbonate composite electrolyte and perovskite cathode[J]. Solid State Ionics, 2011, 201(1): 94-100. |
9 | NAZEMI M, PANIKKANVALAPPIL S R, EL-SAYED M A. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages[J]. Nano Energy, 2018, 49: 316-323. |
10 | 刘化章. 合成氨工业: 过去、现在和未来——合成氨工业创立100周年回顾、启迪和挑战[J]. 化工进展, 2013, 32(9): 1995-2005. |
LIU Huazhang. Ammonia synthesis industry: past, present and future—Retrospect, enlightenment and challenge from 100 years of ammonia synthesis industry[J]. Chemical Industry and Engineering Progress, 2013, 32(9): 1995-2005. | |
11 | BICER Y, KHALID F, MOHAMED A M O, et al. Electrochemical modelling of ammonia synthesis in molten salt medium for renewable fuel production using wind power[J]. International Journal of Hydrogen Energy, 2020, 45(60): 34938-34948. |
12 | 郑沐云, 万宇驰, 吕瑞涛. 电催化氮气还原合成氨催化材料研究进展[J]. 化工学报, 2020, 71(6): 2481-2491. |
ZHENG Muyun, WAN Yuchi, Ruitao LYU. Research progress on electrocatalytic nitrogen reduction reaction catalysts for ammonia synthesis[J]. CIESC Journal, 2020, 71(6): 2481-2491. | |
13 | FUERTE A, VALENZUELA R X, ESCUDERO M J, et al. Ammonia as efficient fuel for SOFC[J]. Journal of Power Sources, 2009, 192(1): 170-174. |
14 | PELLETIER L, MCFARLAN A, MAFFEI N. Ammonia fuel cell using doped Barium cerate proton conducting solid electrolytes[J]. Journal of Power Sources, 2005, 145(2): 262-265. |
15 | ZHANG L M, YANG W S. Direct ammonia solid oxide fuel cell based on thin proton-conducting electrolyte[J]. Journal of Power Sources, 2008, 179(1): 92-95. |
16 | LAN R, ALKHAZMI K A, AMAR I A, et al. Synthesis of ammonia directly from wet air at intermediate temperature[J]. Applied Catalysis B: Environmental, 2014, 152/153: 212-217. |
17 | HUMPHREYS J, LAN R, DU D W, et al. Promotion effect of proton-conducting oxide BaZr0.1Ce0.7Y0.2O3-δ on the catalytic activity of Ni towards ammonia synthesis from hydrogen and nitrogen[J]. International Journal of Hydrogen Energy, 2018, 43(37): 17726-17736. |
18 | SKODRA A, STOUKIDES M. Electrocatalytic synthesis of ammonia from steam and nitrogen at atmospheric pressure[J]. Solid State Ionics, 2009, 180(23/24/25): 1332-1336. |
19 | VASILEIOU E, KYRIAKOU V, GARAGOUNIS I, et al. Ammonia synthesis at atmospheric pressure in a BaCe0.2Zr0.7Y0.1O2.9 solid electrolyte cell[J]. Solid State Ionics, 2015, 275: 110-116. |
20 | WANG Q R, GUO J P, CHEN P. Recent progress towards mild-condition ammonia synthesis[J]. Journal of Energy Chemistry, 2019, 36: 25-36. |
21 | DUAN G Y, CHEN Y M, TANG Y, et al. Advances in electrocatalytic ammonia synthesis under mild conditions[J]. Progress in Energy and Combustion Science, 2020, 81: 100860. |
22 | ZHAO R B, XIE H T, CHANG L, et al. Recent progress in the electrochemical ammonia synthesis under ambient conditions[J]. EnergyChem, 2019, 1(2): 100011. |
23 | ZHANG S, ZHAO Y X, SHI R, et al. Photocatalytic ammonia synthesis: recent progress and future[J]. EnergyChem, 2019, 1(2): 100013. |
24 | LAN R, ALKHAZMI K A, AMAR I A, et al. Synthesis of ammonia directly from wet air using new perovskite oxide La0.8Cs0.2Fe0.8Ni0.2O3-δ as catalyst[J]. Electrochimica Acta, 2014, 123: 582-587. |
25 | LI H W, LI T T, QIAN J J, et al. CuCo2S4 integrated multiwalled carbon nanotube as high-performance electrocatalyst for electroreduction of nitrogen to ammonia[J]. International Journal of Hydrogen Energy, 2020, 45(29): 14640-14647. |
26 | XU H, ITHISUPHALAP K, LI Y, et al. Electrochemical ammonia synthesis through N2 and H2O under ambient conditions: theory, practices, and challenges for catalysts and electrolytes[J]. Nano Energy, 2020, 69: 104469. |
27 | CHENG S, GAO Y J, YAN Y L, et al. Oxygen vacancy enhancing mechanism of nitrogen reduction reaction property in Ru/TiO2[J]. Journal of Energy Chemistry, 2019, 39: 144-151. |
28 | CHERKASOV N, IBHADON A O, FITZPATRICK P. A review of the existing and alternative methods for greener nitrogen fixation[J]. Chemical Engineering and Processing: Process Intensification, 2015, 90: 24-33. |
29 | KYRIAKOU V, GARAGOUNIS I, VASILEIOU E, et al. Progress in the electrochemical synthesis of ammonia[J]. Catalysis Today, 2017, 286: 2-13. |
30 | DENG J, IÑIGUEZ J A, LIU C. Electrocatalytic nitrogen reduction at low temperature[J]. Joule, 2018, 2(5): 846-856. |
31 | AMAR I A, LAN R, HUMPHREYS J, et al. Electrochemical synthesis of ammonia from wet nitrogen via a dual-chamber reactor using La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.8Gd0.18Ca0.02O2-δ composite cathode[J]. Catalysis Today, 2017, 286: 51-56. |
32 | YANG C H, ZHU Y T, LIU J Q, et al. Defect engineering for electrochemical nitrogen reduction reaction to ammonia[J]. Nano Energy, 2020, 77: 105126. |
33 | CHEN S M, PERATHONER S, AMPELLI C, et al. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst[J]. Angewandte Chemie: International Edtion, 2017, 56(10): 2699-2703. |
34 | CHEN G F, REN S Y, ZHANG L L, et al. Advances in electrocatalytic N2 reduction—strategies to tackle the selectivity challenge[J]. Small Methods, 2019, 3(6): 1800337. |
35 | MENG X X, YAN W, YANG N T, et al. Highly stable microtubular solid oxide fuel cells based on integrated electrolyte/anode hollow fibers[J]. Journal of Power Sources, 2015, 275: 362-369. |
36 | MENG X X, SHANG Y Y, MENG B, et al. Bi-functional performances of BaCe0.95Tb0.05O3-δ-based hollow fiber membranes for power generation and hydrogen permeation[J]. Journal of the European Ceramic Society, 2016, 36(16): 4123-4129. |
37 | SONG J, KANG J, TAN X Y, et al. Proton conducting perovskite hollow fibre membranes with surface catalytic modification for enhanced hydrogen separation[J]. Journal of the European Ceramic Society, 2016, 36(7): 1669-1677. |
38 | WANG J D, XIE Y H, ZHANG Z F, et al. Protonic conduction in Ca2+-doped La2M2O7 (M=Ce, Zr) with its application to ammonia synthesis electrochemically[J]. Materials Research Bulletin, 2005, 40(8): 1294-1302. |
39 | XIE Y H, WANG J D, LIU R Q, et al. Preparation of La1.9Ca0.1Zr2O6.95 with pyrochlore structure and its application in synthesis of ammonia at atmospheric pressure[J]. Solid State Ionics, 2004, 168(1/2): 117-121. |
40 | 刘瑞泉, 谢亚红, 李志杰, 等. 质子导体(Ce0.8La0.2)1-xCaxO2-δ在合成氨中的应用[J]. 物理化学学报, 2005, 21(9): 967-970. |
LIU Ruiquan, XIE Yahong, LI Zhijie, et al. Application of proton conductors(Ce0.8La0.2)1-xCaxO2-δ in synthesis of ammonia[J]. Acta Physico-Chimica Sinica, 2005, 21(9): 967-970. | |
41 | LIU R Q, XIE Y H, WANG J D, et al. Synthesis of ammonia at atmospheric pressure with Ce0.8M0.2O2-δ (M=La, Y, Gd, Sm) and their proton conduction at intermediate temperature[J]. Solid State Ionics, 2006, 177(1/2): 73-76. |
42 | SKINNER S J, KILNER J A. Oxygen ion conductors[J]. Materials Today, 2003, 6(3): 30-37. |
43 | PHAIR J W, BADWAL S P S. Review of proton conductors for hydrogen separation[J]. Ionics, 2006, 12(2): 103-115. |
44 | SONG J, MENG B, TAN X Y. Stability and electrical conductivity of BaCe0.85Tb0.05M0.1O3-δ (M=Co, Fe, Y, Zr, Mn) high temperature proton conductors[J]. Ceramics International, 2016, 42(11): 13278-13284. |
45 | IWAHARA H, ESAKA T, UCHIDA H, et al. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production[J]. Solid State Ionics, 1981, 3/4: 359-363. |
46 | CHEN Y, WEI Y Y, ZHUANG L B, et al. Effect of Pt layer on the hydrogen permeation property of La5.5W0.45Nb0.15Mo0.4O11.25-δ membrane[J]. Journal of Membrane Science, 2018, 552: 61-67. |
47 | SHANG Y Y, WEI L Y, MENG X X, et al. CO2-enhanced hydrogen permeability of dual-layered A-site deficient Ba0.95Ce0.85Tb0.05Zr0.1O3-δ-based hollow fiber membrane[J]. Journal of Membrane Science, 2018, 546: 82-89. |
48 | 任晓玲, 严孝清, 龚湘姣, 等. 光(电)催化氮气还原合成氨研究进展[J]. 化工进展, 2020, 39(12): 4856-4876. |
REN Xiaoling, YAN Xiaoqing, GONG Xiangjiao, et al. Overview on photo(electro)catalytic nitrogen fixation for ammonia synthesis[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4856-4876. | |
49 | ZHANG K, SUNARSO J, SHAO Z P, et al. Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production[J]. RSC Advances, 2011, 1(9): 1661. |
50 | VASILEIOU E, KYRIAKOU V, GARAGOUNIS I, et al. Electrochemical enhancement of ammonia synthesis in a BaZr0.7Ce0.2Y0.1O2.9 solid electrolyte cell[J]. Solid State Ionics, 2016, 288: 357-362. |
51 | PANAGOS E, VOUDOURIS I, STOUKIDES M. Modelling of equilibrium limited hydrogenation reactions carried out in H+ conducting solid oxide membrane reactors[J]. Chemical Engineering Science, 1996, 51(11): 3175-3180. |
52 | MARNELLOS G. Ammonia synthesis at atmospheric pressure[J]. Science, 1998, 282(5386): 98-100. |
53 | TANG H D, JIN Z Z, WU Y S, et al. Cobalt-free nanofiber cathodes for proton conducting solid oxide fuel cells[J]. Electrochemistry Communications, 2019, 100: 108-112. |
54 | DUDEK M, LIS B, LACH R, et al. Ba0.95Ca0.05Ce0.9Y0.1O3 as an electrolyte for proton-conducting ceramic fuel cells[J]. Electrochimica Acta, 2019, 304: 70-79. |
55 | XU X, BI L, ZHAO X S. Highly-conductive proton-conducting electrolyte membranes with a low sintering temperature for solid oxide fuel cells[J]. Journal of Membrane Science, 2018, 558: 17-25. |
56 | ZHAI X W, YAN H X, GE G X, et al. The single-Mo-atom-embedded-graphdiyne monolayer with ultra-low onset potential as high efficient electrocatalyst for N2 reduction reaction[J]. Applied Surface Science, 2020, 506: 144941. |
57 | CUI B C, YU Z J, LIU S Z, et al. Highly selective and efficient ammonia synthesis from N2 and H2O via an iron-based electrolytic-chemical cycle[J]. International Journal of Hydrogen Energy, 2020, 45(1): 94-102. |
58 | CHU K, LIU Y P, LI Y B, et al. Multi-functional Mo-doping in MnO2 nanoflowers toward efficient and robust electrocatalytic nitrogen fixation[J]. Applied Catalysis B: Environmental, 2020, 264: 118525. |
59 | TAO H C, CHOI C, DING L X, et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction[J]. Chem, 2019, 5(1): 204-214. |
60 | YANG D S, CHEN T, WANG Z J. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm[J]. Journal of Materials Chemistry A, 2017, 5(36): 18967-18971. |
61 | KOSAKA F, NODA N, NAKAMURA T, et al. In situ formation of Ru nanoparticles on La1-xSrx TiO3-based mixed conducting electrodes and their application in electrochemical synthesis of ammonia using a proton-conducting solid electrolyte[J]. Journal of Materials Science, 2017, 52(5): 2825-2835. |
62 | KIM H, CHUNG Y S, KIM T, et al. Ru-doped Barium strontium titanates of the cathode for the electrochemical synthesis of ammonia[J]. Solid State Ionics, 2019, 339: 115010. |
63 | 刘化章. 传统合成氨工业转型升级的几点思考[J]. 化工进展, 2015, 34(10): 3509-3520. |
LIU Huazhang. Transformation-upgrading and energy-saving of ammonia synthesis industry[J]. Chemical Industry and Engineering Progress, 2015, 34(10): 3509-3520. | |
64 | WANG W B, CAO X B, GAO W J, et al. Ammonia synthesis at atmospheric pressure using a reactor with thin solid electrolyte BaCe0.85Y0.15O3-α membrane[J]. Journal of Membrane Science, 2010, 360(1/2): 397-403. |
65 | WANG W B, LIU J W, LI Y D, et al. Microstructures and proton conduction behaviors of Dy-doped BaCeO3 ceramics at intermediate temperature[J]. Solid State Ionics, 2010, 181(15/16): 667-671. |
66 | LIU J W, LI Y D, WANG W B, et al. Proton conduction at intermediate temperature and its application in ammonia synthesis at atmospheric pressure of BaCe1-xCaxO3-α[J]. Journal of Materials Science, 2010, 45(21): 5860-5864. |
67 | WANG X W, YIN J L, XU J H, et al. Chemical stability, ionic conductivity of BaCe0.9–xZrxSm0.10O3–α and its application to ammonia synthesis at atmospheric pressure[J]. Chinese Journal of Chemistry, 2011, 29(6): 1114-1118. |
68 | CHEN C H, CHANG S J, CHANG S P, et al. Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction[J]. Chemical Physics Letters, 2009, 476(1/2/3): 69-72. |
69 | CHEN C, MA G L. Preparation, proton conduction, and application in ammonia synthesis at atmospheric pressure of La0.9Ba0.1Ga1-xMgxO3-α[J]. Journal of Materials Science, 2008, 43(15): 5109-5114. |
70 | GUO Y X, LIU B X, YANG Q, et al. Preparation via microemulsion method and proton conduction at intermediate-temperature of BaCe1-xYxO3-α[J]. Electrochemistry Communications, 2009, 11(1): 153-156. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[3] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[4] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[5] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[6] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[7] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[8] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[9] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[10] | 杨鹏威, 于琳竹, 王放放, 蒋昊轩, 赵光金, 李琦, 杜铭哲, 马双忱. 氨储能在新型电力系统的应用前景、挑战及发展[J]. 化工进展, 2023, 42(8): 4432-4446. |
[11] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[12] | 王帅旗, 王从新, 王学林, 田志坚. 无溶剂快速合成ZSM-12分子筛[J]. 化工进展, 2023, 42(7): 3561-3571. |
[13] | 余希希, 张金帅, 雷文, 刘承果. 基于动态共价键自修复的光固化高分子材料研究进展[J]. 化工进展, 2023, 42(7): 3589-3599. |
[14] | 王知彩, 刘伟伟, 周璁, 潘春秀, 闫洪雷, 李占库, 颜井冲, 任世彪, 雷智平, 水恒福. 基于煤基腐殖酸的高效减水剂合成与性能表征[J]. 化工进展, 2023, 42(7): 3634-3642. |
[15] | 陈森, 殷鹏远, 杨证禄, 莫一鸣, 崔希利, 锁显, 邢华斌. 功能固体材料智能合成研究进展[J]. 化工进展, 2023, 42(7): 3340-3348. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |