化工进展 ›› 2021, Vol. 40 ›› Issue (9): 4837-4852.DOI: 10.16085/j.issn.1000-6613.2021-0745
收稿日期:
2021-04-09
修回日期:
2021-06-24
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
徐群杰
作者简介:
朱晟(1984—),男,讲师,研究方向为能源转换材料。E-mail:基金资助:
ZHU Sheng(), PENG Yiting, MIN Yulin, LIU Haimei, XU Qunjie()
Received:
2021-04-09
Revised:
2021-06-24
Online:
2021-09-05
Published:
2021-09-13
Contact:
XU Qunjie
摘要:
电化学储能材料及储能技术是新能源利用和实现双碳目标的关键。本文结合上海电力大学上海市电力材料防护与新材料重点实验室的研究成果,综述了近年来电化学储能材料及储能技术的最新研究进展,包括锂离子电池、钠离子电池、锂硫电池和超级电容器等,分析了各电化学储能技术目前存在的主要问题,从电化学储能机理的角度出发,介绍了正负电极、隔膜、电解质和集流体等电化学储能材料组成和结构的改进方法,为开发大容量、长寿命、高安全、低成本的电化学储能器件提供新的思路。最后,对电化学储能技术的未来发展趋势提出了展望,即探索全固态电池、金属-空气电池等新一代储能器件,拓展电化学储能器件在全温度、柔性条件下的适用性。
中图分类号:
朱晟, 彭怡婷, 闵宇霖, 刘海梅, 徐群杰. 电化学储能材料及储能技术研究进展[J]. 化工进展, 2021, 40(9): 4837-4852.
ZHU Sheng, PENG Yiting, MIN Yulin, LIU Haimei, XU Qunjie. Research progress on materials and technologies for electrochemical energy storage[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4837-4852.
1 | 李建林, 孟高军, 葛乐, 等. 全球能源互联网中的储能技术及应用[J]. 电器与能效管理技术, 2020(1): 1-8. |
LI Jianlin, MENG Gaojun, GE Le, et al. Energy storage technology and its application in global energy Internet[J]. Electrical & Energy Management Technology, 2020(1): 1-8. | |
2 | 李雷, 杨春, 谢晓峰. 我国储能产业发展现状、机遇与挑战[J]. 化工进展, 2011, 30(S1): 748-754. |
LI Lei, YANG Chun, XIE Xiaofeng. Current situation, opportunities and challenges of energy storage industry in China[J]. Chemical Industry and Engineering Progress, 2011, 30(S1): 748-754. | |
3 | 孙玉树, 杨敏, 师长立, 等. 储能的应用现状和发展趋势分析[J]. 高电压技术, 2020, 46(1): 80-89. |
SUN Yushu, YANG Min, SHI Changli, et al. Analysis of application status and development trend of energy storage[J]. High Voltage Engineering, 2020, 46(1): 80-89. | |
4 | 张文建, 崔青汝, 李志强, 等. 电化学储能在发电侧的应用[J]. 储能科学与技术, 2020, 9(1): 287-295. |
ZHANG Wenjian, CUI Qingru, LI Zhiqiang, et al. Application of electrochemical energy storage in power generation[J]. Energy Storage Science and Technology, 2020, 9(1): 287-295. | |
5 | 胡静, 黄碧斌, 蒋莉萍, 等. 适应电力市场环境下的电化学储能应用及关键问题[J]. 中国电力, 2020, 53(1): 100-107. |
HU Jing, HUANG Bibin, JIANG Liping, et al. Application and major issues of electrochemical energy storage under the environment of power market[J]. Electric Power, 2020, 53(1): 100-107. | |
6 | 郭松林, 孙博洋, 姚峣, 等. 储能技术及其在新能源并网系统中的典型应用[J]. 工业控制计算机, 2020, 33(11): 142-144, 148. |
GUO Songlin, SUN Boyang,YAO Yao, et al. Energy storage technology and its typical application in new energy grid connection system[J]. Industrial Control Computer, 2020, 33(11): 142-144, 148. | |
7 | 李先锋, 张洪章, 郑琼, 等. 能源革命中的电化学储能技术[J]. 中国科学院院刊, 2019, 34(4): 443-449. |
LI Xianfeng, ZHANG Hongzhang, ZHENG Qiong, et al. Electrochemical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 443-449. | |
8 | NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: present and future[J]. Materials Today, 2015, 18(5): 252-264. |
9 | KIM H, CHOI W, YOON J, et al. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries[J]. Chemical Reviews, 2020, 120(14): 6934-6976. |
10 | WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614. |
11 | GUAN P Y, ZHOU L, YU Z L, et al. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 43: 220-235. |
12 | LI M, LU J, CHEN Z W, et al. 30 Years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561. |
13 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
14 | MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nature Communications, 2020, 11(1): 1550. |
15 | LI M, LIU T C, BI X X, et al. Cationic and anionic redox in lithium-ion based batteries[J]. Chemical Society Reviews, 2020, 49(6): 1688-1705. |
16 | DU M J, LIAO K M, LU Q, et al. Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization[J]. Energy & Environmental Science, 2019, 12(6): 1780-1804. |
17 | YUAN M Q, LIU K. Rational design on separators and liquid electrolytes for safer lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 43: 58-70. |
18 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
19 | ZHAO Y, WANG L P, SOUGRATI M T, et al. A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes[J]. Advanced Energy Materials, 2017, 7(9): 1601424. |
20 | REDDY M V, SUBBA RAO G V, CHOWDARI B V R. Metal oxides and oxysalts as anode materials for Li ion batteries[J]. Chemical Reviews, 2013, 113(7): 5364-5457. |
21 | ZOU F, CHEN Y M, LIU K W, et al. Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage[J]. ACS Nano, 2016, 10(1): 377-386. |
22 | LI H, SU Y, SUN W W, et al. Carbon nanotubes rooted in porous ternary metal Sulfide@N/S-doped carbon dodecahedron: bimetal-organic-frameworks derivation and electrochemical application for high-capacity and long-life lithium-ion batteries[J]. Advanced Functional Materials, 2016, 26(45): 8345-8353. |
23 | LIU J, KOPOLD P, VAN AKEN P A, et al. Energy storage materials from nature through nanotechnology: a sustainable route from reed plants to a silicon anode for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(33): 9632-9636. |
24 | JIANG T C, BU F X, FENG X X, et al. Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery[J]. ACS Nano, 2017, 11(5): 5140-5147. |
25 | WU D B, WANG C, WU H J, et al. Synthesis of hollow Co3O4 nanocrystals in situ anchored on holey graphene for high rate lithium-ion batteries[J]. Carbon, 2020, 163: 137-144. |
26 | WEI H H, ZHANG Q, WANG Y, et al. Baby diaper-inspired construction of 3D porous composites for long-term lithium-ion batteries[J]. Advanced Functional Materials, 2018, 28(3): 1704440. |
27 | CROCE F, APPETECCHI G B, PERSI L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998, 394(6692): 456-458. |
28 | TIKEKAR M D, ARCHER L A, KOCH D L. Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions[J]. Science Advances, 2016, 2(7): e1600320. |
29 | WU B B, WANG S Y, EVANS W J, et al. Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems[J]. Journal of Materials Chemistry A, 2016, 4(40): 15266-15280. |
30 | MAO X F, SHI L Y, ZHANG H J, et al. Polyethylene separator activated by hybrid coating improving Li+ ion transference number and ionic conductivity for Li-metal battery[J]. Journal of Power Sources, 2017, 342: 816-824. |
31 | ZHANG T W, CHEN J L, TIAN T, et al. Sustainable separators for high-performance lithium ion batteries enabled by chemical modifications[J]. Advanced Functional Materials, 2019, 29(28): 1902023. |
32 | ZHANG C, SHEN L, SHEN J Q, et al. Anion-sorbent composite separators for high-rate lithium-ion batteries[J]. Advanced Materials, 2019, 31(21): 1808338. |
33 | ZHANG X H, ZOU L F, XU Y B, et al. Advanced electrolytes for fast-charging high-voltage lithium-ion batteries in wide-temperature range[J]. Advanced Energy Materials, 2020, 10(22): 2000368. |
34 | KIM J, LEE J, MA H, et al. Controllable solid electrolyte interphase in nickel-rich cathodes by an electrochemical rearrangement for stable lithium-ion batteries[J]. Advanced Materials, 2018, 30(5): 1704309. |
35 | WIEMERS-MEYER S, JEREMIAS S, WINTER M, et al. Influence of battery cell components and water on the thermal and chemical stability of LiPF6 based lithium ion battery electrolytes[J]. Electrochimica Acta, 2016, 222: 1267-1271. |
36 | PIECZONKA N P W, LIU Z Y, LU P, et al. Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries[J]. The Journal of Physical Chemistry C, 2013, 117(31): 15947-15957. |
37 | ZHAO W M, ZHENG B Z, LIU H D, et al. Toward a durable solid electrolyte film on the electrodes for Li-ion batteries with high performance[J]. Nano Energy, 2019, 63: 103815. |
38 | LIAO B, LI H Y, XU M Q, et al. Designing low impedance interface films simultaneously on anode and cathode for high energy batteries[J]. Advanced Energy Materials, 2018, 8(22): 1800802. |
39 | CHEN Y, ZHAO W M, ZHANG Q H, et al. Armoring LiNi1/3Co1/3Mn1/3O2 cathode with reliable fluorinated organic-inorganic hybrid interphase layer toward durable high rate battery[J]. Advanced Functional Materials, 2020, 30(19): 2000396. |
40 | BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19-29. |
41 | ZHOU B, GUO L M, ZHANG Y T, et al. A high-performance Li-O2 battery with a strongly solvating hexamethylphosphoramide electrolyte and a LiPON-protected lithium anode[J]. Advanced Materials, 2017, 29(30): 1701568. |
42 | JIN S, SUN Z W, GUO Y L, et al. High areal capacity and lithium utilization in anodes made of covalently connected graphite microtubes[J]. Advanced Materials, 2017, 29(38): 1700783. |
43 | LIANG X, PANG Q, KOCHETKOV I R, et al. A facile surface chemistry route to a stabilized lithium metal anode[J]. Nature Energy, 2017, 2: 17119. |
44 | LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. |
45 | FAN L, ZHUANG H L, ZHANG W D, et al. Stable lithium electrodeposition at ultra-high current densities enabled by 3D PMF/Li composite anode[J]. Advanced Energy Materials, 2018, 8(15): 1703360. |
46 | CHI S S, LIU Y C, SONG W L, et al. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode[J]. Advanced Functional Materials, 2017, 27(24): 1700348. |
47 | ZHAO H, LEI D N, HE Y B, et al. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector[J]. Advanced Energy Materials, 2018, 8(19): 1800266. |
48 | HUANG K, LI Z, XU Q J, et al. Lithiophilic CuO nanoflowers on Ti-mesh inducing lithium lateral plating enabling stable lithium-metal anodes with ultrahigh rates and ultralong cycle life[J]. Advanced Energy Materials, 2019, 9(29): 1900853. |
49 | YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. |
50 | FANG Y J, YU X Y, LOU X W. Nanostructured electrode materials for advanced sodium-ion batteries[J]. Matter, 2019, 1(1): 90-114. |
51 | 朱子翼, 董鹏, 张举峰, 等. 新一代储能钠离子电池正极材料的改性研究进展[J]. 化工进展, 2020, 39(3): 1043-1056. |
ZHU Ziyi, DONG Peng, ZHANG Jufeng, et al. Research progress on modification of cathode materials for new generation energy storage sodium-ion batteries[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1043-1056. | |
52 | TAN H T, CHEN D, RUI X H, et al. Peering into alloy anodes for sodium-ion batteries: current trends, challenges, and opportunities[J]. Advanced Functional Materials, 2019, 29(14): 1808745. |
53 | LIU Y, ZHOU Y R, ZHANG J X, et al. Monoclinic phase Na3Fe2(PO4)3: synthesis, structure, and electrochemical performance as cathode material in sodium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1306-1314. |
54 | KIM J, SEO D H, KIM H, et al. Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries[J]. Energy & Environmental Science, 2015, 8(2): 540-545. |
55 | KOSOVA N V, BELOTSERKOVSKY V A. Sodium and mixed sodium/lithium iron ortho-pyrophosphates: synthesis, structure and electrochemical properties[J]. Electrochimica Acta, 2018, 278: 182-195. |
56 | KIM H, PARK I, LEE S, et al. Understanding the electrochemical mechanism of the new iron-based mixed-phosphate Na4Fe3(PO4)2(P2O7) in a Na rechargeable battery[J]. Chemistry of Materials, 2013, 25(18): 3614-3622. |
57 | WU X H, ZHONG G M, YANG Y. Sol-gel synthesis of Na4Fe3(PO4)2(P2O7)/C nanocomposite for sodium ion batteries and new insights into microstructural evolution during sodium extraction[J]. Journal of Power Sources, 2016, 327: 666-674. |
58 | YUAN T C, WANG Y X, ZHANG J X, et al. 3D graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries[J]. Nano Energy, 2019, 56: 160-168. |
59 | CHEN M Z, HUA W B, XIAO J, et al. NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density[J]. Nature Communications, 2019, 10: 1480. |
60 | CAO Y J, YANG C, LIU Y, et al. A new polyanion Na3Fe2(PO4)P2O7 cathode with high electrochemical performance for sodium-ion batteries[J]. ACS Energy Letters, 2020, 5(12): 3788-3796. |
61 | XU Z L, LIM K, PARK K Y, et al. Engineering solid electrolyte interphase for pseudocapacitive anatase TiO2 anodes in sodium-ion batteries[J]. Advanced Functional Materials, 2018, 28(29): 1802099. |
62 | LIU Y, LIU J Y, BIN D, et al. Ultrasmall TiO2-coated reduced graphene oxide composite as a high-rate and long-cycle-life anode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(17): 14818-14826. |
63 | HE H N, WANG H Y, SUN D, et al. N-doped rutile TiO2/C with significantly enhanced Na storage capacity for Na-ion batteries[J]. Electrochimica Acta, 2017, 236: 43-52. |
64 | LI B S, XI B J, FENG Z Y, et al. Hierarchical porous nanosheets constructed by graphene-coated, interconnected TiO2 nanoparticles for ultrafast sodium storage[J]. Advanced Materials, 2018, 30(10): 1705788. |
65 | SUI Y L, ZHOU J, WANG X W, et al. Recent advances in black-phosphorus-based materials for electrochemical energy storage[J]. Materials Today, 2021, 42: 117-136. |
66 | NA J H, LEE Y T, LIM J A, et al. Few-layer black phosphorus field-effect transistors with reduced current fluctuation[J]. ACS Nano, 2014, 8(11): 11753-11762. |
67 | ZHANG Y, WANG H W, LUO Z Z, et al. An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties[J]. Advanced Energy Materials, 2016, 6(12): 1600453. |
68 | ZHAO Y T, WANG H Y, HUANG H, et al. Surface coordination of black phosphorus for robust air and water stability[J]. Angewandte Chemie International Edition, 2016, 55(16): 5003-5007. |
69 | SUN J, LEE H W, PASTA M, et al. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries[J]. Nature Nanotechnology, 2015, 10(11): 980-985. |
70 | ZHANG Y, SUN W P, LUO Z Z, et al. Functionalized few-layer black phosphorus with super-wettability towards enhanced reaction kinetics for rechargeable batteries[J]. Nano Energy, 2017, 40: 576-586. |
71 | SONG T B, CHEN H, LI Z, et al. Creating an air-stable sulfur-doped black phosphorus-TiO2 composite as high-performance anode material for sodium-ion storage[J]. Advanced Functional Materials, 2019, 29(22): 1900535. |
72 | LAN F Y, ZHANG H Y, FAN J C, et al. Electrospun polymer nanofibers with TiO2@NiCo-LDH as efficient polysulfide barriers for wide-temperature-range Li-S batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2734-2744. |
73 | XIE J, LI B Q, PENG H J, et al. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries[J]. Advanced Materials, 2019, 31(43): 1903813. |
74 | XUE W J, SHI Z, SUO L M, et al. Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities[J]. Nature Energy, 2019, 4(5): 374-382. |
75 | DU Z Z, CHEN X J, HU W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2019, 141(9): 3977-3985. |
76 | SEH Z W, SUN Y M, ZHANG Q F, et al. Designing high-energy lithium-sulfur batteries[J]. Chemical Society Reviews, 2016, 45(20): 5605-5634. |
77 | 陈嘉嘉, 董全峰. 锂硫电池及关键材料研究进展[J]. 电化学, 2020, 26(5): 648-662. |
CHEN Jiajia, DONG Quanfeng. Research progress of key components in lithium-sulfur batteries[J]. Journal of Electrochemistry, 2020, 26(5): 648-662. | |
78 | JI X L, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506. |
79 | SONG J X, GORDIN M L, XU T, et al. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes[J]. Angewandte Chemie International Edition, 2015, 54(14): 4325-4329. |
80 | TANG C, ZHANG Q, ZHAO M Q, et al. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(35): 6100-6105. |
81 | ZHENG J M, TIAN J, WU D X, et al. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries[J]. Nano Letters, 2014, 14(5): 2345-2352. |
82 | PANG Q, NAZAR L F. Long-life and high-areal-capacity Li-S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption[J]. ACS Nano, 2016, 10(4): 4111-4118. |
83 | LIANG X, GARSUCH A, NAZAR L F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2015, 54(13): 3907-3911. |
84 | CUI Z M, ZU C X, ZHOU W D, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Advanced Materials, 2016, 28(32): 6926-6931. |
85 | TAO Y Q, WEI Y J, LIU Y, et al. Kinetically-enhanced polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithium-sulfur battery[J]. Energy & Environmental Science, 2016, 9(10): 3230-3239. |
86 | YUAN Z, PENG H J, HOU T Z, et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Letters, 2016, 16(1): 519-527. |
87 | REHMAN S, TANG T Y, ALI Z, et al. Integrated design of MnO2@carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries[J]. Small, 2017, 13(20): 1700087. |
88 | WANG Y K, ZHANG R F, CHEN J, et al. Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering[J]. Advanced Energy Materials, 2019, 9(24): 1900953. |
89 | ZHANG Y P, GU R, ZHENG S, et al. Long-life Li-S batteries based on enabling the immobilization and catalytic conversion of polysulfides[J]. Journal of Materials Chemistry A, 2019, 7(38): 21747-21758. |
90 | LIU F, XIAO Q F, WU H B, et al. Regenerative polysulfide-scavenging layers enabling lithium-sulfur batteries with high energy density and prolonged cycling life[J]. ACS Nano, 2017, 11(3): 2697-2705. |
91 | KONG W B, YAN L J, LUO Y F, et al. Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li-S batteries[J]. Advanced Functional Materials, 2017, 27(18): 1606663. |
92 | ZHAO T, YE Y S, LAO C Y, et al. A praline-like flexible interlayer with highly mounted polysulfide anchors for lithium-sulfur batteries[J]. Small, 2017, 13(40): 1700357. |
93 | GHAZI Z A, HE X, KHATTAK A M, et al. MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries[J]. Advanced Materials, 2017, 29(21): 1606817. |
94 | PARK J, YU B C, PARK J S, et al. Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li-S battery[J]. Advanced Energy Materials, 2017, 7(11): 1602567. |
95 | ZHOU T H, LV W, LI J, et al. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy & Environmental Science, 2017, 10(7): 1694-1703. |
96 | ZHANG Z, WANG J N, SHAO A, et al. Recyclable cobalt-molybdenum bimetallic carbide modified separator boosts the polysulfide adsorption-catalysis of lithium sulfur battery[J]. Science China Materials, 2020, 63(12): 2443-2455. |
97 | LI Z, ZHANG F, CAO T, et al. Highly stable lithium-sulfur batteries achieved by a SnS/porous carbon nanosheet architecture modified celgard separator[J]. Advanced Functional Materials, 2020, 30(48): 2006297. |
98 | 陈英放, 李媛媛, 邓梅根. 超级电容器的原理及应用[J]. 电子元件与材料, 2008, 27(4): 6-9. |
CHEN Yingfang, LI Yuanyuan, DENG Meigen. Principles and applications of supercapacitors[J]. Electronic Components and Materials, 2008, 27(4): 6-9. | |
99 | 余丽丽, 朱俊杰, 赵景泰. 超级电容器的现状及发展趋势[J]. 自然杂志, 2015, 37(3): 188-196. |
YU Lili, ZHU Junjie, ZHAO Jingtai. The present situation and development trend of supercapacitors[J]. Chinese Journal of Nature, 2015, 37(3): 188-196. | |
100 | POONAM, SHARMA K, ARORA A, et al. Review of supercapacitors: materials and devices[J]. Journal of Energy Storage, 2019, 21: 801-825. |
101 | RAZA W, ALI F, RAZA N, et al. Recent advancements in supercapacitor technology[J]. Nano Energy, 2018, 52: 441-473. |
102 | ZHAO W W, JIANG M Y, WANG W K, et al. Flexible transparent supercapacitors: materials and devices[J]. Advanced Functional Materials, 2021, 31(11): 2009136. |
103 | FENG E K, GAO W, YAN Z, et al. A multifunctional hydrogel polyelectrolyte based flexible and wearable supercapacitor[J]. Journal of Power Sources, 2020, 479: 229100. |
104 | YUN T G, PARK M, KIM D H, et al. All-transparent stretchable electrochromic supercapacitor wearable patch device[J]. ACS Nano, 2019, 13(3): 3141-3150. |
105 | BOMMIER C, XU R, WANG W, et al. Self-activation of cellulose: a new preparation methodology for activated carbon electrodes in electrochemical capacitors[J]. Nano Energy, 2015, 13: 709-717. |
106 | HAMEDI M, KARABULUT E, MARAIS A, et al. Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond[J]. Angewandte Chemie International Edition, 2013, 52(46): 12038-12042. |
107 | CHMIOLA J, YUSHIN G, GOGOTSI Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313(5794): 1760-1763. |
108 | PECH D, BRUNET M, DUROU H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon[J]. Nature Nanotechnology, 2010, 5(9): 651-654. |
109 | PARAKNOWITSCH J P, THOMAS A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications[J]. Energy & Environmental Science, 2013, 6(10): 2839. |
110 | PENG H R, YAO B, WEI X J, et al. Pore and heteroatom engineered carbon foams for supercapacitors[J]. Advanced Energy Materials, 2019, 9(19): 1803665. |
111 | HSIEH C T, TENG H. Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics[J]. Carbon, 2002, 40(5): 667-674. |
112 | QU D Y. Studies of the activated carbons used in double-layer supercapacitors[J]. Journal of Power Sources, 2002, 109(2): 403-411. |
113 | KIM M H, YANG J H, KANG Y M, et al. Fluorinated activated carbon with superb kinetics for the supercapacitor application in nonaqueous electrolyte[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443: 535-539. |
114 | WANG T, ZANG X B, WANG X, et al. Recent advances in fluorine-doped/fluorinated carbon-based materials for supercapacitors[J]. Energy Storage Materials, 2020, 30: 367-384. |
115 | ZHOU J S, LIAN J, HOU L, et al. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres[J]. Nature Communications, 2015, 6: 8503. |
116 | ZHOU F, HUANG H B, XIAO C H, et al. Electrochemically scalable production of fluorine-modified graphene for flexible and high-energy ionogel-based microsupercapacitors[J]. Journal of the American Chemical Society, 2018, 140(26): 8198-8205. |
117 | ZHOU H H, PENG Y T, WU H B, et al. Fluorine-rich nanoporous carbon with enhanced surface affinity in organic electrolyte for high-performance supercapacitors[J]. Nano Energy, 2016, 21: 80-89. |
118 | MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2: 16103. |
119 | ZHANG Z Z, SHAO Y J, LOTSCH B, et al. New horizons for inorganic solid state ion conductors[J]. Energy & Environmental Science, 2018, 11(8): 1945-1976. |
120 | DUBAL D P, CHODANKAR N R, KIM D H, et al. Towards flexible solid-state supercapacitors for smart and wearable electronics[J]. Chemical Society Reviews, 2018, 47(6): 2065-2129. |
121 | LI J, QIAO J L, LIAN K. Hydroxide ion conducting polymer electrolytes and their applications in solid supercapacitors: a review[J]. Energy Storage Materials, 2020, 24: 6-21. |
122 | HUANG Y, ZHONG M, SHI F K, et al. An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte[J]. Angewandte Chemie International Edition, 2017, 56(31): 9141-9145. |
123 | LU C, CHEN X. All-temperature flexible supercapacitors enabled by antifreezing and thermally stable hydrogel electrolyte[J]. Nano Letters, 2020, 20(3): 1907-1914. |
124 | TAI Z Y, WEI J J, ZHOU J, et al. Water-mediated crystallohydrate-polymer composite as a phase-change electrolyte[J]. Nature Communications, 2020, 11: 1843. |
125 | TAN D H S, BANERJEE A, CHEN Z, et al. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries[J]. Nature Nanotechnology, 2020, 15(3): 170-180. |
126 | 邹俊彦, 张焱焱, 陈石, 等. 全固态锂金属电池表界面化学的研究进展[J]. 高等学校化学学报, 2021, 42(4): 1005-1016. |
ZOU Junyan, ZHANG Yanyan, CHEN Shi, et al. Recent development on surface-interface chemistry of all-solid-state lithium batteries[J]. Chemical Journal of Chinese Universities, 2021, 42(4): 1005-1016. | |
127 | KWAK W J, ROSY, SHARON D, et al. Lithium-oxygen batteries and related systems: potential, status, and future[J]. Chemical Reviews, 2020, 120(14): 6626-6683. |
128 | WANG H F, XU Q. Materials design for rechargeable metal-air batteries[J]. Matter, 2019, 1(3): 565-595. |
129 | CHEN M Z, ZHANG Y Y, XING G C, et al. Electrochemical energy storage devices working in extreme conditions[J]. Energy & Environmental Science, 2021, 14(6): 3323-3351. |
130 | ZHAO J X, LU H Y, ZHANG Y, et al. Direct coherent multi-ink printing of fabric supercapacitors[J]. Science Advances, 2021, 7(3): eabd6978. |
[1] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[4] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[5] | 杨涵, 张一波, 李琦, 张俊, 陶莹, 杨全红. 面向实用化的钠离子电池碳负极:进展及挑战[J]. 化工进展, 2023, 42(8): 4029-4042. |
[6] | 朱薇, 齐鹏刚, 苏银海, 张书平, 熊源泉. 生物油分级多孔碳超级电容器电极材料的制备及性能[J]. 化工进展, 2023, 42(6): 3077-3086. |
[7] | 王昊, 霍进达, 曲国瑞, 杨家琪, 周世伟, 李博, 魏永刚. 退役锂电池正极材料资源化回收技术研究进展[J]. 化工进展, 2023, 42(5): 2702-2716. |
[8] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[9] | 于捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, 2023, 42(4): 1760-1768. |
[10] | 蔡江涛, 候刘华, 兰雨金, 张晨陈, 刘国阳, 朱由余, 张建兰, 赵世永, 张亚婷. 沥青基多孔炭材料的制备及在超级电容器中的应用进展[J]. 化工进展, 2023, 42(4): 1895-1906. |
[11] | 万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
[12] | 王钰琢, 李刚. 硫、氮共掺杂三维石墨烯的全固态超级电容器[J]. 化工进展, 2023, 42(4): 1974-1982. |
[13] | 杜保宁, 赵珊, 刘向卿, 张毅, 肖雅茹, 张少飞, 李田田, 孙金峰. 纳米多孔CuMn基氧化物电极的制备及性能[J]. 化工进展, 2023, 42(3): 1484-1492. |
[14] | 田甜, 雷西萍, 于婷, 樊凯, 宋晓琪, 朱航. 碳材料在柔性超级电容器中的研究进展[J]. 化工进展, 2023, 42(2): 884-896. |
[15] | 卓祖优, 宋生南, 黄明堦, 杨旋, 卢贝丽, 陈燕丹. 草酸钾-尿素协同活化法制备超大比表面积面粉基多级孔炭及其电化学储能应用[J]. 化工进展, 2023, 42(2): 925-933. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |