1 |
UTETIWABO W , YANG L , TUFAIL M K , et al . Electrode materials derived from plastic wastes and other industrial wastes for supercapacitors[J]. Chinese Chemical Letters, 2020, 31(6): 1474-1489.
|
2 |
姜文明 . 基于固废高分子材料制备多孔炭材料及其电化学性能研究[D]. 镇江: 江苏大学, 2015.
|
|
JIANG Wenming . Study on the synthesis of porous carbon materials derived from polymer wastes and the electrochemical performance[D]. Zhenjiang: Jiangsu University, 2015.
|
3 |
闵嘉康 . 聚苯乙烯模板碳化反应在制备储能器件电极材料中的应用[D]. 北京: 中国科学院大学, 2018.
|
|
MIN Jiakang . Application of template carbonization of polystyrene in energy storage devices[D]. Beijing: University of Chinese Academy of Sciences, 2018.
|
4 |
曹玉亭, 张锦赓 . 废旧塑料的再生利用[J]. 当代化工, 2011, 40(2): 190-192.
|
|
CAO Yuting , ZHANG Jingeng . Recycling and reusing of waste plastic[J]. Contemporary Chemical Industry, 2011, 40(2): 190-192.
|
5 |
WANG G P , ZHANG L , ZHANG J J . A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828.
|
6 |
SIMON P , GOGOTSI Y . Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
|
7 |
SHI H . Activated carbons and double layer capacitance[J]. Electrochimica Acta, 1996, 41(10): 1633-1639.
|
8 |
MA T Y , LIU L , YUAN Z Y . Direct synthesis of ordered mesoporous carbons[J]. Chemical Society Reviews, 2013, 42(9): 3977-4003.
|
9 |
MENG Y , GU D , ZHANG F Q , et al . Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation[J]. Angewandte Chemie, 2005, 117(43): 7215-7221.
|
10 |
JAIN A , BALASUBRAMANIAN R , SRINIVASAN M P . Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review[J]. Chemical Engineering Journal, 2016, 283: 789-805.
|
11 |
YOSHIDA S , HIRAGA K , TAKEHANA T , et al . A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278): 1196-1199.
|
12 |
ELESSAWY N A , NADY J EL , WAZEER W , et al . Development of high-performance supercapacitor based on a novel controllable green synthesis for 3D nitrogen doped graphene[J]. Scientific Reports, 2019, 9: 1129.
|
13 |
WEN Y L , KIERZEK K , MIN J K , et al . Porous carbon nanosheet with high surface area derived from waste poly(ethylene terephthalate) for supercapacitor applications[J]. Journal of Applied Polymer Science, 2020, 137(5): 48338.
|
14 |
AL-ENIZI A M , UBAIDULLAH M , AHMED J , et al . Synthesis of NiO x @NPC composite for high-performance supercapacitor via waste PET plastic-derived Ni-MOF[J]. Composites Part B: Engineering, 2020, 183: 107655.
|
15 |
AL-ENIZI A M , AHMED J , UBAIDULLAH M , et al . Utilization of waste polyethylene terephthalate bottles to develop metal-organic frameworks for energy applications: a clean and feasible approach[J]. Journal of Cleaner Production, 2020, 248: 119251.
|
16 |
UBAIDULLAH M , AL-ENIZI A M , AHAMAD T , et al . Fabrication of highly porous N-doped mesoporous carbon using waste polyethylene terephthalate bottle-based MOF-5 for high performance supercapacitor[J]. Journal of Energy Storage, 2021, 33: 102125.
|
17 |
MIRJALILI A , DONG B , PENA P , et al . Upcycling of polyethylene terephthalate plastic waste to microporous carbon structure for energy storage[J]. Energy Storage, 2020, 2(6): e201.
|
18 |
MU X Y , LI Y H , LIU X G , et al . Controllable carbonization of plastic waste into three-dimensional porous carbon nanosheets by combined catalyst for high performance capacitor[J]. Nanomaterials, 2020, 10(6): 1097.
|
19 |
LIU X G , WEN Y L , CHEN X C , et al . Co-etching effect to convert waste polyethylene terephthalate into hierarchical porous carbon toward excellent capacitive energy storage[J]. Science of the Total Environment, 2020, 723: 138055.
|
20 |
SANGEETHA D N , SANTOSH M S , SELVAKUMAR M . Flower-like carbon doped MoS2/activated carbon composite electrode for superior performance of supercapacitors and hydrogen evolution reactions[J]. Journal of Alloys and Compounds, 2020, 831: 154745.
|
21 |
ZHANG H , ZHOU X L , SHAO L M , et al . Upcycling of PET waste into methane-rich gas and hierarchical porous carbon for high-performance supercapacitor by autogenic pressure pyrolysis and activation[J]. The Science of the Total Environment, 2021, 772: 145309.
|
22 |
ZHU H . Preparation and electrochemical properties of porous carbon materials derived from waste plastic foam and their application for supercapacitors[J]. International Journal of Electrochemical Science, 2021: 210343.
|
23 |
LEE H M , KANG S J , KIM B J . Electrochemical behaviors LDPE-based activated carbon by steam activation[J]. Functional Nanostructures Proceedings, 2017: www.onecentralpress.com/.
|
24 |
ZHANG H , ZHOU X L , SHAO L M , et al . Hierarchical porous carbon spheres from low-density polyethylene for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 3801-3810.
|
25 |
LIAN Y M , NI M , HUANG Z H , et al . Polyethylene waste carbons with a mesoporous network towards highly efficient supercapacitors[J]. Chemical Engineering Journal, 2019, 366: 313-320.
|
26 |
LIAN Y M , UTETIWABO W , ZHOU Y D , et al . From upcycled waste polyethylene plastic to graphene/mesoporous carbon for high-voltage supercapacitors[J]. Journal of Colloid and Interface Science, 2019, 557: 55-64.
|
27 |
SUN L , WANG C L , ZHOU Y , et al . Activated nitrogen-doped carbons from polyvinyl chloride for high-performance electrochemical capacitors[J]. Journal of Solid State Electrochemistry, 2014, 18(1): 49-58.
|
28 |
CHANG Y N , PANG Y C , DANG Q D , et al . Converting polyvinyl chloride plastic wastes to carbonaceous materials via room-temperature dehalogenation for high-performance supercapacitor[J]. ACS Applied Energy Materials, 2018, 1(10): 5685-5693.
|
29 |
PANDEY S , KARAKOTI M , SURANA K , et al . Graphene nanosheets derived from plastic waste for the application of DSSCs and supercapacitors[J]. Scientific Reports, 2021, 11: 3916.
|
30 |
HU X , LIN Z D . Transforming waste polypropylene face masks into S-doped porous carbon as the cathode electrode for supercapacitors[J]. Ionics, 2021, 27(5): 2169-2179.
|
31 |
ZHANG Y X , SHEN Z M , YU Y F , et al . Porous carbon derived from waste polystyrene foam for supercapacitor[J]. Journal of Materials Science, 2018, 53(17): 12115-12122.
|
32 |
WANG G X , LIU L , ZHANG L L , et al . Porous carbon nanosheets prepared from plastic wastes for supercapacitors[J]. Journal of Electronic Materials, 2018, 47(10): 5816-5824.
|
33 |
MIN J K , ZHANG S , LI J X , et al . From polystyrene waste to porous carbon flake and potential application in supercapacitor[J]. Waste Management, 2019, 85: 333-340.
|
34 |
MA C D , LIU X G , MIN J K , et al . Sustainable recycling of waste polystyrene into hierarchical porous carbon nanosheets with potential applications in supercapacitors[J]. Nanotechnology, 2020, 31(3): 035402.
|
35 |
MA C D , MIN J K , GONG J , et al . Transforming polystyrene waste into 3D hierarchically porous carbon for high-performance supercapacitors[J]. Chemosphere, 2020, 253: 126755.
|
36 |
WEN Y L , WEN X , WENELSKA K , et al . Novel strategy for preparation of highly porous carbon sheets derived from polystyrene for supercapacitors[J]. Diamond and Related Materials, 2019, 95: 5-13.
|
37 |
URGUNDE A B , BAHUGUNA G , DHAMIJA A , et al . Ni ink-catalyzed conversion of a waste polystyrene-sugar composite to graphitic carbon for electric double-layer supercapacitors[J]. ACS Applied Electronic Materials, 2020, 2(10): 3178-3186.
|
38 |
CHEN X Y , CHENG L X , DENG X , et al . Generalized conversion of halogen-containing plastic waste into nanoporous carbon by a template carbonization method[J]. Industrial & Engineering Chemistry Research, 2014, 53(17): 6990-6997.
|
39 |
CHANG Y N , ZHANG G X , HAN B , et al . Polymer dehalogenation-enabled fast fabrication of N, S-codoped carbon materials for superior supercapacitor and deionization applications[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 29753-29759.
|
40 |
SCHNEIDERMANN C , OTTO P , LEISTENSCHNEIDER D , et al . Upcycling of polyurethane waste by mechanochemistry: synthesis of N-doped porous carbon materials for supercapacitor applications[J]. Beilstein Journal of Nanotechnology, 2019, 10: 1618-1627.
|