1 | AL-BOGAMI S A, de LASA H I. Catalytic conversion of benzothiophene over a H-ZSM5 based catalyst[J]. Fuel, 2013, 108: 490-501. | 2 | NEUBAUER R, WEINLAENDER C, KIENZL N, et al. Adsorptive on-board desulfurization over multiple cycles for fuel-cell-based auxiliary power units operated by different types of fuels[J]. Journal of Power Sources, 2018, 385: 45-54. | 3 | HUO Q, LI J, LIU G, et al. Adsorption desulfurization performances of Zn/Co porous carbons derived from bimetal-organic frameworks[J]. Chemical Engineering Journal, 2019, 362: 287-297. | 4 | LIU C, YUAN P, DUAN A, et al. Monodispersed dendritic mesoporous silica/carbon nanospheres with enhanced active site accessibility for selective adsorptive desulfurization[J]. Journal of Materials Science, 2019, 54(11): 8148-8162. | 5 | SOLEIMANI M, BASSI A, MARGARITIS A. Biodesulfurization of refractory organic sulfur compounds in fossil fuels[J]. Biotechnology Advances, 2007, 25(6): 570-596. | 6 | SRIVASTAVA V C. An evaluation of desulfurization technologies for sulfur removal from liquid fuels[J]. RSC Advances, 2012, 2(3): 759-783. | 7 | CAMPOS-MARTIN J M, CAPEL-SANCHEZ M C, PEREZ-PRESAS P, et al. Oxidative processes of desulfurization of liquid fuels[J]. Journal of Chemical Technology and Biotechnology, 2010, 85(7): 879-890. | 8 | TAN P, JIANG Y, SUN L, et al. Design and fabrication of nanoporous adsorbents for the removal of aromatic sulfur compounds[J]. Journal of Materials Chemistry A, 2018, 6(47): 23978-24012. | 9 | DANG S, ZHAO L, YANG Q, et al. Competitive adsorption mechanism of thiophene with benzene in FAU zeolite: the role of displacement[J]. Chemical Engineering Journal, 2017, 328: 172-185. | 10 | 郭忠森, 祖运, 惠宇, 等. 烯烃对噻吩在介孔分子筛Al-MCM-41活性位物种上吸附脱硫机制的影响[J]. 燃料化学学报, 2019, 47(4): 474-483. | 10 | GUO Zhongsen, ZU Yun, HUI Yu, et al. Influence of olefin on the mechanism of thiophene adsorption on the active species of Al-MCM-41 mesoporous zeolites[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 474-483. | 11 | YANG R T, HERNANDEZ-MALDONADO A J, YANG F H. Desulfurization of transportation fuels with zeolites under ambient conditions[J]. Science, 2003, 301(5629): 79-81. | 12 | HERNANDEZ-MALDONADO A J, YANG R T. Desulfurization of diesel fuels by adsorption via π-complexation with vapor-phase exchanged Cu(l)-Y zeolites[J]. Journal of the American Chemical Society, 2004, 126(4): 992-993. | 13 | HERNANDEZ-MALDONADO A J, YANG F H, QI G, et al. Desulfurization of transportation fuels by π-complexation sorbents: Cu(Ⅰ)-, Ni(Ⅱ)-, and Zn(Ⅱ)-zeolites[J]. Applied Catalysis B: Environmental, 2005, 56(1/2): 111-126. | 14 | SONG C, MA X L. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization[J]. Applied Catalysis B: Environmental, 2003, 41(2): 207-238. | 15 | MA X L, SUN L, SONG C S. A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications[J]. Catalysis Today, 2002, 77(2): 107-116. | 16 | KONG L, ZHANG T, YAO R, et al. Adsorptive desulfurization of fuels with Cu(Ⅰ)/SBA-15 via low-temperature reduction[J]. Microporous and Mesoporous Materials, 2017, 251: 69-76. | 17 | JIANG W, YIN Y, LIU X, et al. Fabrication of supported cuprous sites at low temperatures: an efficient, controllable strategy using vapor-induced reduction[J]. Journal of the American Chemical Society, 2013, 135(22): 8137-8140. | 18 | 丁润东, 祖运, 周传行, 等. CuNaY分子筛的有效吸附位与其脱硫性能的关联性研究[J]. 燃料化学学报, 2018, 46(4): 451-458. | 18 | DING Run-dong, ZU Yun, ZHOU Chuan-hang, et al. Insight into the correlation between the effective adsorption sites and adsorption desulfurization performance of CuNaY zeolite[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 451-458. | 19 | PARK J G, KO C H, YI K B, et al. Reactive adsorption of sulfur compounds in diesel on nickel supported on mesoporous silica[J]. Applied Catalysis B: Environmental, 2008, 81(3/4): 244-250. | 20 | LI H, HAN X, HUANG H, et al. Competitive adsorption desulfurization performance over K-doped NiY zeolite[J]. Journal of Colloid and Interface Science, 2016, 483: 102-108. | 21 | 肖永厚, 王仰东, 洪涛, 等. 含Cu分子筛吸附剂及其制备方法: CN104549139A[P]. 2015-04-29. | 21 | XIAO Yonghou, WANG Yangdong, HONG Tao, et al. The preparation of Cu-containing molecular sieve adsorbent: CN104549139A[P]. 2015-04-29. | 22 | LI H, DONG L, ZHAO L, et al. Enhanced adsorption desulfurization performance over mesoporous ZSM-5 by alkali treatment[J]. Industrial & Engineering Chemistry Research, 2017, 56(14): 3813-3821. | 23 | YANG C, MENG X, YI D, et al. Alkali-treatment of silicalite-1/CuY core-shell structure for the adsorption desulfurization of dimethyl disulfide from methyl tert-butyl ether[J]. Industrial & Engineering Chemistry Research, 2019, 58(4): 1613-1623. | 24 | TIAN F, SHEN Q, FU Z, et al. Enhanced adsorption desulfurization performance over hierarchically structured zeolite Y[J]. Fuel Processing Technology, 2014, 128: 176-182. | 25 | 潘兴朋, 吴相英, 杜君, 等. 碱处理Beta分子筛吸附脱硫动力学[J]. 化工学报, 2016, 67(9): 3747-3754. | 25 | PAN Xingpeng, WU Xiangying, DU Jun, et al. Kinetics of adsorptive desulfurization over alkaline-treated Beta zeolite[J]. CIESC Journal, 2016, 67(9): 3747-3754. | 26 | LEE K X, TSILOMELEKIS G, VALLA J A. Removal of benzothiophene and dibenzothiophene from hydrocarbon fuels using CuCe mesoporous Y zeolites in the presence of aromatics[J]. Applied Catalysis B: Environmental, 2018, 234: 130-142. | 27 | LEE K X, VALLA J A. Investigation of metal-exchanged mesoporous Y zeolites for the adsorptive desulfurization of liquid fuels[J]. Applied Catalysis B: Environmental, 2017, 201: 359-369. | 28 | KARAKHANOV E A, GLOTOV A P, NIKIFOROVA A G, et al. Catalytic cracking additives based on mesoporous MCM-41 for sulfur removal[J]. Fuel Processing Technology, 2016, 153: 50-57. | 29 | 肖永厚, 姜淮, 薛强强, 等. 一种无黏结剂复合分子筛制备方法及其在油品吸附脱硫中的应用: CN109647329A[P]. 2019-04-19. | 29 | XIAO Yonghou, JIANG Huai, XUE Qiangqiang, et al. A preparation method of binderless composite molecular sieve and its application in adsorption desulfurization from oil: CN109647329A[P]. 2019-04-19. | 30 | FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 974. | 31 | CYCHOSZ K A, WONG-FOY A G, MATZGER A J. Liquid phase adsorption by microporous coordination polymers: removal of organosulfur compounds[J]. Journal of the American Chemical Society, 2008, 130(22): 6938. | 32 | MCNAMARA N D, HICKS J C. Chelating agent-free, vapor-assisted crystallization method to synthesize hierarchical microporous/mesoporous MIL-125 (Ti)[J]. ACS Applied Materials & Interfaces, 2015, 7(9): 5338-5346. | 33 | ZHANG H, HUANG H, LI C, et al. Adsorption behavior of metal-organic frameworks for thiophenic sulfur from diesel oil[J]. Industrial & Engineering Chemistry Research, 2012, 51(38): 12449-12455. | 34 | BLANCO-BRIEVA G, CAMPOS-MARTIN J M, AL-ZAHRANI S M, et al. Effectiveness of metal-organic frameworks for removal of refractory organo-sulfur compound present in liquid fuels[J]. Fuel, 2011, 90(1): 190-197. | 35 | PEARSON R G. Hard and soft acids and bases[J]. Journal of the American Chemical Society, 1963, 85(22): 3533-3539. | 36 | PERALTA D, CHAPLAIS G, SIMON-MASSERON A, et al. Metal-organic framework materials for desulfurization by adsorption[J]. Energy & Fuels, 2012, 26(8): 4953-4960. | 37 | ZHANG W, KAUER M, HALBHERR O, et al. Ruthenium metal-organic frameworks with different defect types: influence on porosity, sorption, and catalytic properties[J]. Chemistry: a European Journal, 2016, 22(40): 14297-14307. | 38 | DAI W, HU J, ZHOU L, et al. Removal of dibenzothiophene with composite adsorbent MOF-5/Cu(Ⅰ)[J]. Energy & Fuels, 2013, 27(2): 816-821. | 39 | QIN J, TAN P, JIANG Y, et al. Functionalization of metal-organic frameworks with cuprous sites using vapor-induced selective reduction: efficient adsorbents for deep desulfurization[J]. Green Chemistry, 2016, 18(11): 3210-3215. | 40 | JIN Y, WU J, WANG J, et al. Highly efficient capture of benzothiophene with a novel water-resistant-bimetallic Cu-ZIF-8 material[J]. Inorganica Chimica Acta, 2020, 503: 119412. | 41 | BAN S, LONG K, XIE J, et al. Thiophene separation with silver-doped Cu-BTC metal-organic framework for deep desulfurization[J]. Industrial & Engineering Chemistry Research, 2018, 57(8): 2956-2966. | 42 | SAMOKHVALOV A, TATARCHUK B J. Review of experimental characterization of active sites and determination of molecular mechanisms of adsorption, desorption and regeneration of the deep and ultradeep desulfurization sorbents for liquid fuels[J]. Catalysis Reviews: Science and Engineering, 2010, 52(3): 381-410. | 43 | BALTZOPOULOU P, KALLIS K X, KARAGIANNAKIS G, et al. Diesel fuel desulfurization via adsorption with the aid of activated carbon: laboratory- and pilot-scale studies[J]. Energy & Fuels, 2015, 29(9): 5640-5648. | 44 | 肖永厚, 王树东, 袁权. 浸渍活性炭脱除硫化氢研究进展[J]. 化工进展, 2006, 25(9): 1025-1030. | 44 | XIAO Yonghou, WANG Shudong, YUAN Quan. Research progress of removal of H2S on impregnated activated carbon[J]. Chemical Industry and Engineering Progress, 2006, 25(9): 1025-1030. | 45 | DENG L, LU B, LI J, et al. Effect of pore structure and oxygen-containing groups on adsorption of dibenzothiophene over activated carbon[J]. Fuel, 2017, 200: 54-61. | 46 | JUNG B K, JHUNG S H. Adsorptive removal of benzothiophene from model fuel, using modified activated carbons, in presence of diethylether[J]. Fuel, 2015, 145: 249-255. | 47 | IRAVANI A A, GUNDA K, NG F T T. Adsorptive removal of refractory sulfur compounds by tantalum oxide modified activated carbons[J]. AIChE Journal, 2017, 63(11): 5044-5053. | 48 | BIGDELI S, FATEMI S. Fast carbon nanofiber growth on the surface of activated carbon by microwave irradiation: a modified nano-adsorbent for deep desulfurization of liquid fuels[J]. Chemical Engineering Journal, 2015, 269: 306-315. | 49 | SHAH S S, AHMAD I, AHMAD W, et al. Study on adsorptive capability of acid activated charcoal for desulphurization of model and commercial fuel oil samples[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 4037-4043. | 50 | YANG E, YAO C, LIU Y, et al. Bamboo-derived porous biochar for efficient adsorption removal of dibenzothiophene from model fuel[J]. Fuel, 2018, 211: 121-129. | 51 | SHI Y, ZHANG X, LIU G. Activated carbons derived from hydrothermally carbonized sucrose: remarkable adsorbents for adsorptive desulfurization[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2237-2246. | 52 | QIU J, WANG G, BAO Y, et al. Effect of oxidative modification of coal tar pitch-based mesoporous activated carbon on the adsorption of benzothiophene and dibenzothiophene[J]. Fuel Processing Technology, 2015, 129: 85-90. | 53 | 唐晓东, 陆海, 李晶晶, 等. 低温一步法活性炭基脱硫剂的制备与评价[J]. 燃料化学学报, 2018, 46(5): 633-640. | 53 | TANG Xiaodong, LU Hai, LI Jingjing, et al. Preparation and evaluation of activated carbon-based desulfurization adsorbent by one-step method at low temperature[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 633-640. | 54 | SHI Y, LIU G, WANG L, et al. Efficient adsorptive removal of dibenzothiophene from model fuel over heteroatom-doped porous carbons by carbonization of an organic salt[J]. Chemical Engineering Journal, 2015, 259: 771-778. | 55 | ZHAO R, JIN Z, WANG J, et al. Adsorptive desulfurization of model fuel by S, N-codoped porous carbons based on polybenzoxazine[J]. Fuel, 2018, 218: 258-265. | 56 | JEON H, KO C H, KIM S H, et al. Removal of refractory sulfur compounds in diesel using activated carbon with controlled porosity[J]. Energy & Fuels, 2009, 23(5/6): 2537-2543. | 57 | BU J, LOH G, GWIE C G, et al. Desulfurization of diesel fuels by selective adsorption on activated carbons: competitive adsorption of polycyclic aromatic sulfur heterocycles and polycyclic aromatic hydrocarbons[J]. Chemical Engineering Journal, 2011, 166(1): 207-217. | 58 | TAN P, XUE D, ZHU J, et al. Hierarchical N-doped carbons from designed N-rich polymer: adsorbents with a record-high capacity for desulfurization[J]. AIChE Journal, 2018, 64(11): 3786-3793. | 59 | 高宇, 卞杨燕, 崔群, 等. 活性炭吸附二苯并噻吩过程中酚羟基作用的分子模拟和实验研究[J]. 高校化学工程学报, 2012, 26(2): 344-348. | 59 | GAO Yu, BIAN Yang-yan, CUI Qun, et al. A molecular simulation and experimental study of the effect of phenolic hydroxyl on the adsorption of dibenzothiophene on activated carbon[J]. Journal of Chemical Engineering of Chinese Universities, 2012, 26(2): 344-348. | 60 | ANTONIETTI M, FECHLER N, FELLINGER T. Carbon aerogels and monoliths: control of porosity and nanoarchitecture via sol-gel routes[J]. Chemistry of Materials, 2014, 26(1SI): 196-210. | 61 | WANG C, ZHONG H, WU W, et al. Fe3O4@C core-shell carbon hybrid materials as magnetically separable adsorbents for the removal of dibenzothiophene in fuels[J]. ACS Omega, 2019, 4(1): 1652-1661. | 62 | TAN P, XIE X, LIU X, et al. Fabrication of magnetically responsive HKUST-1/Fe3O4 composites by dry gel conversion for deep desulfurization and denitrogenation[J]. Journal of Hazardous Materials, 2017, 321: 344-352. | 63 | CHENG J, JIN S, ZHANG R, et al. Enhanced adsorption selectivity of dibenzothiophene on ordered mesoporous carbon-silica nanocomposites via copper modification[J]. Microporous and Mesoporous Materials, 2015, 212: 137-145. | 64 | MATLOOB A M, EL-HAFIZ D R ABD, SAAD L, et al. Metal organic framework-graphene nano-composites for high adsorption removal of DBT as hazard material in liquid fuel[J]. Journal of Hazardous Materials, 2019, 373: 447-458. | 65 | EMAM H E, AHMED H B, EL-DEIB H R, et al. Non-invasive route for desulfurization of fuel using infrared-assisted MIL-53(Al)-NH2 containing fabric[J]. Journal of Colloid and Interface Science, 2019, 556: 193-205. | 66 | HABIMANA F, SHI D, JI S. Synthesis of Cu-BTC/Mt composites porous materials and their performance in adsorptive desulfurization process[J]. Applied Clay Science, 2018, 152: 303-310. | 67 | KHAN N A, BHADRA B N, JHUNG S H. Heteropoly acid-loaded ionic liquid@metal-organic frameworks: effective and reusable adsorbents for the desulfurization of a liquid model fuel[J]. Chemical Engineering Journal, 2018, 334: 2215-2221. | 68 | SWAT A A A, SALEH T A, GANIYU S A, et al. Preparation of activated carbon, zinc oxide and nickel oxide composites for potential application in the desulfurization of model diesel fuels[J]. Journal of Analytical and Applied Pyrolysis, 2017, 128: 246-256. | 69 | GUO C, JIN S, WANG X, et al. Promoting effect of surface acidities on efficiency of copper modifier for ordered mesoporous carbon-SiO2-Al2O3 nanocomposites in adsorptive desulfurization[J]. Microporous and Mesoporous Materials, 2017, 240: 197-204. | 70 | ZUHRA Z, MU C, TANG F, et al. Enhanced adsorptive desulfurization by iso-structural amino bearing IRMOF-3 and IRMOF-3@Al2O3 versus MOF-5 and MOF-5@Al2O3 revealing the predominant role of hydrogen bonding[J]. Dalton Transactions, 2019, 48(39): 14792-14800. |
|