1 | SHOLL D, LIVELY R. Seven chemical separations to change the world[J]. Nature, 2016, 532: 435-437. | 2 | 刘会洲, 刘小平, 陈欣, 等. 绿色分离技术发展态势与展望[J]. 过程工程学报, 2019, 19(s1): 25-34. | 2 | LIU Huizhou, LIU Xiaoping, CHEN Xin, et al. Development trend and prospect of green separation technology[J]. The Chinese Journal of Process Engineering, 2019, 19(s1): 25-34. | 3 | 翟睿, 焦丰龙, 林虹君, 等. 金属有机框架材料的研究进展[J]. 色谱, 2014, 32(2): 107-116. | 3 | ZHAI Rui, JIAO Fenglong, LIN Hongjun, et al. Progress in metal-organic frameworks[J]. Chinese Journal of Chromatography, 2014, 32(2): 107-116. | 4 | EVANS J D, GARAI B, REINSCH H, et al. Metal-organic frameworks in Germany: from synthesis to function[J]. Coordination Chemistry Reviews, 2019, 380: 378-418. | 5 | FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 974-987. | 6 | CZAJA A U, TRUKHAN N, MULLER U. Industrial applications of metal-organic frameworks[J]. Chemical Society Review, 2009, 38(5): 1284-1293. | 7 | FEREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042. | 8 | HONICKE I M, SENKOVSKA I, BON V, et al. Balancing mechanical stability and ultrahigh porosity in crystalline framework materials[J]. Angew. Chem.: Int. Ed. Engl., 2018, 57(42): 13780-13783. | 9 | 周元敬, 杨明莉, 武凯, 等. 金属有机骨架MOFs多孔材料的孔结构调节途径[J]. 材料科学与工程学报, 2007, 25(2): 307-313. | 9 | ZHOU Yuanjing, YANG Mingli, WU Kai, et al. Approaches to adjust pore structure of porous metal-organic framework materials[J]. Journal of Materials Science &Engineering, 2007, 25(2): 307-313. | 10 | CHEN C X, WE Z W, JIANG J J, et al. Precise modulation of the breathing behavior and pore surface in Zr-MOFs by reversible post-synthetic variable-spacer installation to fine-tune the expansion magnitude and sorption properties[J]. Angew Chemie: International Edition, 2016, 55: 9932-9936. | 11 | PANG Q, TU B, LI Q. Metal-organic frameworks with multicomponents in order[J]. Coordination Chemistry Reviews, 2019, 388: 107-125. | 12 | LIN R B, XIANG S C, LI B, et al. Our journey of developing multifunctional metal-organic frameworks[J]. Coordination Chemistry Reviews, 2019, 384: 21-36. | 13 | AKBAR RAZAVI S A, MORSALI A. Linker functionalized metal-organic frameworks[J]. Coordination Chemistry Reviews, 2019, 399: 213023. | 14 | CHEN Z J, HANNA S L, REDFERN L R, et al. Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs[J]. Coordination Chemistry Reviews, 2019, 386: 32-49. | 15 | ZHANG Q, CUI Y J, QIAN G D. Goal-directed design of metal-organic frameworks for liquid-phase adsorption and separation[J]. Coordination Chemistry Reviews, 2019, 378: 310-332. | 16 | CHEN B L, XIANG S H, QIAN G D. Metal-organicframeworks with functional pores for recognition of small molecules[J]. Accounts Chemistry Research, 2010, 43 (8): 1115-1124. | 17 | DENG H, DOONAN C J, FURUKAWA H, et al. Multiple functional groups of varying ratios in metal-organic frameworks[J]. Science, 2012, 327(5967): 846-850. | 18 | HWANG Y K, HONG D Y, CHANG J S, et al. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation[J]. Angewandte Chemie, 2008, 120 (22): 4212-4216. | 19 | COHEN S M. The Postsynthetic renaissance in porous solids[J]. Journal of the American Chemical Society, 2017, 139(8): 2855-2863. | 20 | CUI P P, WANG P, ZHAO Y, et al. Fabrication of desired metal-organic frameworks via postsynthetic exchange and sequential linker installation[J]. Crystal Growth & Design, 2019, 19(2): 1454-1470. | 21 | TOVAR T M, IORDANOV I, GALLIS D F S, et al. Enhancing Van der Waals interactions of functionalized UiO-66[J]. Chemistry: a European Journal, 2018, 4: 1931-1937. | 22 | BURAGOHAIN A, COUCK S, VOORT P VAN DER, et al. Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=-F, -Cl, -Br, -CH3, -C6H4, -F2, -(CH3)2) materials[J]. Journal of Solid State Chemistry, 2016, 238: 195-202. | 23 | STEPHAN B, VINCENT G, CHRISTIAN S. Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid[J]. Chem. Commun., 2011, 47: 2838-2840. | 24 | MITHUN S, JI Y S, SUNG H J. Carboxylic-acid-functionalized UiO-66-NH2: a promising adsorbent for both aqueous- and non-aqueous-phase adsorptions[J]. Chemical Engineering Journal, 2018, 331, 124–131 | 25 | AL-JANABI N, DENG H R, BORGES J, et al. A facile post-synthetic modification method to improve hydrothermal stability and CO2 selectivity of CuBTC metal-organic framework[J]. Industrial Engineering Chemistry Research, 2016, 55 (29): 7941-7949. | 26 | WENG H, YAN B. A Eu(Ⅲ) doped metal-organic framework conjungated with fluorescein-labeled single-stranded DNA for detection of Cu(Ⅱ) and shufide[J]. Analytica Chimica Acta, 2017, 998: 89-95. | 27 | LI Z Q, WANG G N, YE Y X, et al. Loading photochromic molecules into a luminescent metal-organic framework for information anticounterfeiting[J]. Angew. Chem.: Int. Ed., 2019, 58: 2-9. | 28 | JAE H L, SUNGEUN J, YONGCHUL G C, et al. Elucidation of flexible metal-organic frameworks: research progresses and recent developments[J]. Coordination Chemistry Reviews, 2019, 389: 161-188. | 29 | LI H L, EDDAOUDI M, Groy T L, et al. Establishing microporosity in open metal-organic frameworks: gas sorption isotherms for Zn(BDC) (BDC) 1,4-benzenedicarboxylate) [J]. Journal of the American Chemical Society, 1998, 120: 8571-8572. | 30 | DING M L, FLAIG R W, JIANG H L, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chemical Society Reviews, 2019, 48 (10): 2783-2828. | 31 | CHEN C, KIM J, AHN W S. CO2 capture by amine-functionalized nanoporous materials: a review[J]. Korean Journal of Chemical Engineering, 2014, 31(11): 1919-1934. | 32 | EMERSON A J, CHAHINE A, BATTEN S R, et al. Synthetic approaches for the incorporation of free amine functionalities in porous coordination polymers for enhanced CO2 sorption[J]. Coordination Chemistry Reviews, 2018, 365: 1-22. | 33 | OLAJIRE A A. Synthesis of bare and functionalized porous adsorbent materials for CO2 capture[J]. Greenhouse Gases-Science and Technology, 2017, 7(3): 399-459. | 34 | BABAEI M, SALEHI S, ANBIA M, et al. Improving CO2 adsorption capacity and CO2/CH4 selectivity with amine functionalization of MIL-100 and MIL-101[J]. Journal of Chemical and Engineering Data, 2018, 63(5): 1657-1662. | 35 | GAIKWAD S, KIM S J, HAN S. CO2 capture using amine-functionalized bimetallic MIL-101 MOFs and their stability on exposure to humid air and acid gases[J]. Microporous and Mesoporous Material, 2019, 277: 253-260. | 36 | ANDIROVA D, LEI Y, ZHAO X D, et al. Functionalization of metal-organic frameworks for enhanced stability under humid carbon dioxide capture conditions[J]. ChemSusChem, 2015, 8(20): 3405-3409. | 37 | ZHANG Z J, XIAN S K, XIA Q B, et al. Enhancement of CO2 adsorption and CO2/N2 selectivity on ZIF-8 via postsynthetic modification[J]. AIChE Journal, 2013, 59(6): 2195-2206. | 38 | ALDUHAISH O, LI B, ARMAN H D, et al. A two-dimensional microporous metal-organic framework for highly selective adsorption of carbon dioxide and acetylene[J]. Chinese Chemical Letters, 2017, 28(8): 1653-1658. | 39 | CHEN Y Q, LI Y K, ZHUANG G R, et al. Zn(Ⅱ)-benzotriazolate clusters based amide functionalized porous coordination polymers with high CO2 adsorption selectivity[J]. Inorganic Chemistry, 2014, 53(17): 8842-8844. | 40 | JIAO J J, DOU L, LIU H M, et al. An aminopyrimidine-functionalized cage-based metal-organic framework exhibiting highly selective adsorption of C2H2 and CO2 over CH4[J]. Dalton Transactions, 2016, 45(34): 13373-13382. | 41 | RAVICHIANDAR B, MARTA R M, MATTEW R H, et al. Interpenetrated zirconium-organic frameworks: small cavities versus functionalization for CO2 capture[J]. Journal of Physical Chemistry C, 2016, 120(24): 13013-13023. | 42 | DIDAS S A, CHEN Z X, XIANG S C, et al. Significantly enhanced CO2/CH4 separation selectivity within a 3D prototype metal-organic framework functionalized with OH groups on pore surfaces at room temperature[J]. European Journal of Inorganic Chemistry, 2011(14): 2227-2231. | 43 | CUI H, CHEN S M, ARMAN H, et al. A microporous metal-organic framework of SQ1 topology for C2H2/CO2 separation[J]. Inorganic Chimica Acta, 2019, 495: 118938. | 44 | HUANG Y T, QIN W P, LI Z, et al. Enhanced stability and CO2 affinity of a UiO-66 type metal-organic framework decorated with dimethyl groups[J]. Dalton Transactions, 2012, 41(31): 9283-9285. | 45 | BENSON O, et al. Amides do not always work: observation of guest binding in an amide-functionalized porous metal-organic framework[J]. Journal of the American Chemical Society, 2016, 138(45): 14828-14831. | 46 | BACHMAN J E, KAPELEWSKI M T, REED D A, et al. M2(m-dobdc)(M=Mn, Fe, Co, Ni) metal-organic frameworks as highly selective, high-capacity adsorbents for olefin/paraffin separations[J]. J. Am. Chem. Soc., 2017, 139: 15363-15370. | 47 | YANG S H, RANIREZ-CUESTA A J, NEWBY R, et al. Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework[J]. Nature Chemistry, 2014, 7(2): 121-129. | 48 | HUANG Y B, LIN Z J, FU H R, et al. Porous anionic indium–organic framework with enhanced gas and vapor adsorption and separation ability[J]. ChemSusChem, 2014, 7: 2647-2653. | 49 | BELMABKHOUT Y, MOUTTAKI H, EUBANK J F, et al. Effect of pendant isophthalic acid moieties on the adsorption properties of light hydrocarbons in HKUST-1-like TBO-MOFs: application to methane purification and storage[J]. RSC Advances, 2014, 4(109): 63855-63859. | 50 | LI H, LI L B, LIN R B, et al. Porous metal-organic frameworks for gas storage and separation: status and challenges[J]. EnergyChem, 2019, 1(1): 100006. | 51 | BANU A M, FRIEDRICH D, BRANDANI S, et al. A multiscale study of MOFs as adsorbents in H2 PSA purification[J]. Industrial & Engineering Chemistry Research, 2013, 52(29): 9946-9957. | 52 | CUI X L, YANG Q W, YANG L F, et al. Ultrahigh and selective SO2 uptake in inorganic anion-pillared hybrid porous materials[J]. Advanced Materials, 2017, 29(28): 1606929. | 53 | HE W W, YANG G S, TANG Y J, et al. Phenyl groups result in the highest benzene storage and most efficient desulfurization in a series of isostructural metal-organic frameworks[J]. Chemistry: a European Journal, 2015, 21(27): 9784-9789. | 54 | JASUJA H, PETERSON G W, DECOSTE J B, et al. Evaluation of MOFs for air purification and air quality control applications: ammonia removal from air[J]. Chemical Engineering Science, 2015, 124: 118-124. |
|