1 | BABICH I V, MOULIJN J A. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review[J]. Fuel, 2003, 82(6): 607-631. | 2 | SONG C S, MA X L. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization[J]. Applied Catalysis B: Environmental, 2003, 41(1): 207-238. | 3 | 刘畅, 闫志义, 李巧灵, 等. 选择吸附脱硫研究进展[J]. 化工进展, 2019, 38(11): 5114-5126. | 3 | LIU Chang, YAN Zhiyi, LI Qiaoling, et al. Research progress of selective adsorption desulfurization[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5114-5126. | 4 | 钟黄亮, 王春霞, 周广林, 等. 基于纳米材料的静态吸附脱硫进展[J]. 化工进展, 2018, 37(7): 2655-2663. | 4 | ZHONG Huangliang, WANG Chunxia, ZHOU Guanglin, et al. Static adsorption desulfurization based on nanomaterials[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2655-2663. | 5 | ZHOU H Y, LI G, WANG X X, et al. Preparation of a kind of mesoporous carbon and its performance in adsorptive desulfurization[J]. Journal of Natural Gas Chemistry, 2009, 18(3): 365-368. | 6 | SEREDYCH M, LISON J, JANS U, et al. Textural and chemical factors affecting adsorption capacity of activated carbon in highly efficient desulfurization of diesel fuel[J]. Carbon, 2009, 47(10): 2491-2500. | 7 | SALEH T A, DANMALIKI G I. Influence of acidic and basic treatments of activated carbon derived from waste rubber tires on adsorptive desulfurization of thiophenes[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60: 460-468. | 8 | ANIA C O, BANDOSZ T J. Importance of structural and chemical heterogeneity of activated carbon surfaces for adsorption of dibenzothiophene[J]. Langmuir, 2005, 21(17): 7752-7759. | 9 | SHI Y W, ZHANG X W, LIU G Z. Activated carbons derived from hydrothermally carbonized sucrose: remarkable adsorbents for adsorptive desulfurization[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2237-2246. | 10 | SHI Y W, ZHANG X W, LIU G Z. Adsorptive desulfurization performances of ordered mesoporous carbons with tailored textural and surface properties[J]. Fuel, 2015, 158: 565-571. | 11 | WU L M, SITAMRAJU S, XIAO J, et al. Effect of liquid-phase O3 oxidation of activated carbon on the adsorption of thiophene[J]. Chemical Engineering Journal, 2014, 242: 211-219. | 12 | WANG L F, YANG R T, SUN C-L. Graphene and other carbon sorbents for selective adsorption of thiophene from liquid fuel[J]. AIChE Journal, 2013, 59(1): 29-32. | 13 | ZHOU A, MA X, SONG C. Liquid-phase adsorption of multi-ring thiophenic sulfur compounds on carbon materials with different surface properties[J]. The Journal of Physical Chemistry B, 2006, 110(10): 4699-4707. | 14 | XIAO J, SONG C S, MA X L, et al. Effects of aromatics, diesel additives, nitrogen compounds, and moisture on adsorptive desulfurization of diesel fuel over activated carbon[J]. Industrial & Engineering Chemistry Research, 2012, 51(8): 3436-3443. | 15 | HERNANDEZ-MALDONADO A J, STAMATIS S D, YANG R T, et al. New sorbents for desulfurization of diesel fuels via π complexation: layered beds and regeneration[J]. Industrial & Engineering Chemistry Research, 2004, 43(3): 769-776. | 16 | MA X L, VELU S, KIM J H, et al. Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications[J]. Applied Catalysis B: Environmental, 2005, 56(1): 137-147. | 17 | HERNANDEZ-MALDONADO A J, YANG R T. New sorbents for desulfurization of diesel fuels via π-complexation[J]. AIChE Journal, 2004, 50(4): 791-801. | 18 | TAKAHASHI A, YANG F H, YANG R T. New sorbents for desulfurization by π-complexation: thiophene/benzene adsorption[J]. Industrial & Engineering Chemistry Research, 2002, 41(10): 2487-2496. | 19 | HERNANDEZ-MALDONADO A J, YANG R T. Desulfurization of diesel fuels by adsorption via π-complexation with vapor-phase exchanged Cu(Ⅰ)-Y zeolites[J]. Journal of the American Chemical Society, 2004, 126(4): 992-993. | 20 | WANG H G, SONG L J, JIANG H, et al. Effects of olefin on adsorptive desulfurization of gasoline over Ce(Ⅳ)Y zeolites[J]. Fuel Processing Technology, 2009, 90(6): 835-838. | 21 | BHANDARI V M, HYUN K C, GEUN P J, et al. Desulfurization of diesel using ion-exchanged zeolites[J]. Chemical Engineering Science, 2006, 61(8): 2599-2608. | 22 | WANG Y H, YANG R T, HEINZEL J M. Desulfurization of jet fuel by π-complexation adsorption with metal halides supported on MCM-41 and SBA-15 mesoporous materials[J]. Chemical Engineering Science, 2008, 63(2): 356-365. | 23 | HERNANDEZ-MALDONADO A J, YANG F H, QI G, et al. Desulfurization of transportation fuels by π-complexation sorbents: Cu(Ⅰ)-, Ni(Ⅱ)-, and Zn(Ⅱ)-zeolites[J]. Applied Catalysis B: Environmental, 2005, 56(1): 111-126. | 24 | YANG R T, TAKAHASHI A, YANG F H. New sorbents for desulfurization of liquid fuels by π-complexation[J]. Industrial & Engineering Chemistry Research, 2001, 40(26): 6236-6239. | 25 | YANG R T, HERNANDEZ-MALDONADO A J, YANG F H. Desulfurization of transportation fuels with zeolites under ambient conditions[J]. Science, 2003, 301(5629): 79. | 26 | HERNANDEZ-MALDONADO A J, QI G, YANG R T. Desulfurization of commercial fuels by π-complexation: monolayer CuCl/γ-Al2O3[J]. Applied Catalysis B: Environmental, 2005, 61(3): 212-218. | 27 | HERNANDEZ-MALDONADO A J, YANG R T. Desulfurization of liquid fuels by adsorption via π complexation with Cu(Ⅰ)-Y and Ag-Y zeolites[J]. Industrial & Engineering Chemistry Research, 2003, 42(1): 123-129. | 28 | DASTANIAN M, SEYEDEYN-AZAD F. Desulfurization of gasoline over nanoporous nickel-loaded Y-type zeolite at ambient conditions[J]. Industrial & Engineering Chemistry Research, 2010, 49(22): 11254-11259. | 29 | LI B, XU D, JIANG Z Y, et al. Pervaporation performance of PDMS-Ni2+Y zeolite hybrid membranes in the desulfurization of gasoline[J]. Journal of Membrane Science, 2008, 322(2): 293-301. | 30 | CHEN J, ZHANG B, MIAO G, et al. New SiO2-NiO aerogel sorbents for desulfurization by π-complexation: influence of molar ratio of Si/Ni[J]. Industrial & Engineering Chemistry Research, 2016, 55(17): 5036-5042. | 31 | CHEN H, WANG Y H, YANG F H, et al. Desulfurization of high-sulfur jet fuel by mesoporous π-complexation adsorbents[J]. Chemical Engineering Science, 2009, 64(24): 5240-5246. | 32 | GONG Y J, DOU T, KANG S J, et al. Deep desulfurization of gasoline using ion-exchange zeolites: Cu(Ⅰ)- and Ag(Ⅰ)-beta[J]. Fuel Processing Technology, 2009, 90(1):122-129. | 33 | XIAO J, LI Z, LIU B, et al. Adsorption of benzothiophene and dibenzothiophene on ion-impregnated activated carbons and ion-exchanged Y zeolites[J]. Energy & Fuels, 2008, 22(6): 3858-3863. | 34 | XIAO J, BIAN G A, ZHANG W, et al. Adsorption of dibenzothiophene on Ag/Cu/Fe-supported activated carbons prepared by ultrasonic-assisted impregnation[J]. Journal of Chemical & Engineering Data, 2010, 55(12): 5818-5823. | 35 | XIONG J, ZHU W S, LI H P, et al. Few-layered graphene-like boron nitride induced a remarkable adsorption capacity for dibenzothiophene in fuels[J]. Green Chemistry, 2015, 17(3): 1647-1656. | 36 | XIONG J, ZHU W S, LI H P, et al. Carbon-doped porous boron nitride: metal-free adsorbents for sulfur removal from fuels[J]. Journal of Materials Chemistry A, 2015, 3(24): 12738-12747. | 37 | XIONG J, YANG L, CHAO Y H, et al. Boron nitride mesoporous nanowires with doped oxygen atoms for the remarkable adsorption desulfurization performance from fuels[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(8): 4457-4464. | 38 | MEILLE V, SCHULZ E, MEILLE V, et al. A new route towards deep desulfurization: selective charge transfer complex formation[J]. Chemical Communications, 1998(3):305-306. | 39 | MILENKOVIC A, SCHULZ E, MEILLE V, et al. Selective elimination of alkyldibenzothiophenes from gas oil by formation of insoluble charge-transfer complexes[J]. Energy & Fuels, 1999, 13(4): 881-887. | 40 | MILENKOVIC A, MACAUD M, SCHULZ E, et al. How could organic synthesis help the understanding of the problems of deep hydrodesulfurization of gasoils?[J]. Comptes Rendus de l'Académie des Sciences Series IIC Chemistry, 2000, 3(6): 459-463. | 41 | ARMAGHAN M, AMINI M M, KHAVASI H R, et al. Inorganic-organic hybrid sorbent for aromatic desulfurization of hydrocarbons: regenerative adsorption based on a charge-transfer complex[J]. RSC Advances, 2016, 6(88): 85381-85389. | 42 | FAVRE-REGUILLON A, SEVIGNON M, ROCAULT M, et al. Deep desulfurization of diesel feedstock by selective adsorption of refractory sulfur compounds[J]. Industrial & Engineering Chemistry Research, 2008, 47(23): 9617-9622. | 43 | SEVIGNON M, MACAUD M, FAVRE-REGUILLON A, et al. Ultra-deep desulfurization of transportation fuels via charge-transfer complexes under ambient conditions[J]. Green Chemistry, 2005, 7(6): 413-420. | 44 | WEI X L, HUSSON S M, MELLO M, et al. Removal of branched dibenzothiophenes from hydrocarbon mixtures via charge transfer complexes with a TAPA-functionalized Adsorbent[J]. Industrial & Engineering Chemistry Research, 2008, 47(13): 4448-4454. | 45 | MISRA P, BADOGA S, CHENNA A, et al. Denitrogenation and desulfurization of model diesel fuel using functionalized polymer: charge transfer complex formation and adsorption isotherm study[J]. Chemical Engineering Journal, 2017, 325: 176-187. | 46 | SHIRAISHI Y, YAMADA A, HIRAI T. Desulfurization and denitrogenation of light oils by methyl viologen-modified aluminosilicate adsorbent[J]. Energy & Fuels, 2004, 18(5): 1400-1404. | 47 | CYCHOSZ K A, WONG-FOY A G, MATZGER A J. Liquid phase adsorption by microporous coordination polymers: removal of organosulfur compounds[J]. Journal of the American Chemical Society, 2008, 130(22): 6938-6939. | 48 | PERALTA D, CHAPLAIS G, SIMON-MASSERON A, et al. Metal-organic framework materials for desulfurization by adsorption[J]. Energy & Fuels, 2012, 26(8): 4953-4960. | 49 | QIN J X, TAN P, JIANG Y, et al. Functionalization of metal-organic frameworks with cuprous sites using vapor-induced selective reduction: efficient adsorbents for deep desulfurization[J]. Green Chemistry, 2016, 18(11): 3210-3215. | 50 | MIAO K J, HE Q X, LI Y X, et al. Fabrication of Cu(I)-functionalized MIL-101(Cr) for adsorptive desulfurization: low-temperature controllable conversion of Cu(Ⅱ) via vapor-induced reduction[J]. Inorganic Chemistry, 2019, 58(16): 11085-11090. | 51 | LI S S, LI Y X, JIN M M, et al. Controllable fabrication of cuprous sites in confined spaces for efficient adsorptive desulfurization[J]. Fuel, 2020, 259: 116221. | 52 | KHAN N A, JUN J W, JEONG J H, et al. Remarkable adsorptive performance of a metal-organic framework, vanadium-benzenedicarboxylate (MIL-47), for benzothiophene[J]. Chemical Communications, 2011, 47(4): 1306-1308. | 53 | VOORDE B V D, HEZINOVA M, LANNOEYE J, et al. Adsorptive desulfurization with CPO-27/MOF-74: an experimental and computational investigation[J]. Physical Chemistry Chemical Physics, 2015, 17(16): 10759-10766. | 54 | AHMED I, JHUNG S H. Adsorptive desulfurization and denitrogenation using metal-organic frameworks[J]. Journal of Hazardous Materials, 2016, 301: 259-276. | 55 | WU L M, XIAO J, WU Y, et al. A combined experimental/computational study on the adsorption of organosulfur compounds over metal-organic frameworks from Fuels[J]. Langmuir, 2014, 30(4): 1080-1088. | 56 | SHI Y W, ZHANG X W, WANG L, et al. MOF-derived porous carbon for adsorptive desulfurization[J]. AIChE Journal, 2014, 60(8): 2747-2751. | 57 | SENTORUN-SHALABY C, SAHA S K, MA X L, et al. Mesoporous-molecular-sieve-supported nickel sorbents for adsorptive desulfurization of commercial ultra-low-sulfur diesel fuel[J]. Applied Catalysis B: Environmental, 2011, 101(3/4): 718-726. | 58 | SENTORUN-SHALABY C, MA X L, SONG C S, Ultra-deep desulfurization of ultra-low sulfur diesel over nickel-based sorbents in the presence of hydrogen for fuel cell applications[J]. ACS Symposium Series, 2011, 1088:55-62. | 59 | ASLAM S, SUBHAN F, YAN Z F, et al. Facile fabrication of Ni-based KIT-6 for adsorptive desulfurization[J]. Chemical Engineering Journal, 2016, 302: 239-248. | 60 | 顾兴平. S-Zorb 催化裂化汽油吸附脱硫技术[J]. 石油化工技术与经济, 2012, 28(3): 59-62. | 60 | GU X P. S-Zorb FCC gasoline adsorption desulfurization technology[J]. Techno-Economics in Petrochemicals, 2012, 28(3): 59-62. | 61 | 华炜. S-Zorb 吸附剂及其工艺进展[J]. 中外能源, 2013, 18(3): 70-78. | 61 | HUA W. S-Zorb adsorbent and its technological progress[J]. Sino-Global Energy, 2013, 18(3): 70-78. | 62 | QIU L M, ZOU K, XU G T. Investigation on the sulfur state and phase transformation of, spent and regenerated S zorb sorbents using XPS and XRD[J]. Applied Surface Science, 2013, 266:230-234. | 63 | 崔立勇. S-Zorb技术生产低硫汽油、低硫柴油[J]. 山东化工, 2004, 33(4):38-40, 56. | 63 | CUI L Y. S-Zorb technology in producing gasoline and diesel with low sulfur[J]. Shandong Chemical Industry, 2004, 33(4):38-40, 56. | 64 | 朱云霞, 徐惠. S-Zorb 技术的完善及发展[J]. 炼油技术与工程, 2009, 39(8): 7-12. | 64 | ZHU Y X, XU H. Improvement and development of S-Zorb process[J]. Petroleum Refinery Engineering, 2009, 39(8): 7-12. | 65 | 张树广. S-Zorb 大型化工业装置特点及运行总结[J]. 石油炼制与化工, 2019, 50(3): 77-79. | 65 | ZHANG Shuguang. Characteristics and operation of large-scale S-Zorb industrial plant[J]. Petroleum Processing and Petrochemicals, 2019, 50(3): 77-79. | 66 | XIAO J, WANG X X, CHEN Y S, et al. Ultra-deep adsorptive desulfurization of light-irradiated diesel fuel over supported TiO2-CeO2 adsorbents[J]. Industrial & Engineering Chemistry Research, 2013, 52(45): 15746-15755. | 67 | ZHANG W, XIAO J, WANG X, et al. Oxidative desulfurization using in-situ-generated peroxides in diesel by light irradiation[J]. Energy & Fuels, 2014, 28(8): 5339-5344. | 68 | MIAO G, YE F Y, WU L M, et al. Selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation[J]. Journal of Hazardous Materials, 2015, 300: 426-432. | 69 | MIAO G, HUANG D S, REN X L, et al. Visible-light induced photocatalytic oxidative desulfurization using BiVO4/C3N4@SiO2 with air/cumene hydroperoxide under ambient conditions[J]. Applied Catalysis B: Environmental, 2016, 192: 72-79. | 70 | SUN X N, TATARCHUK B J. Photo-assisted adsorptive desulfurization of hydrocarbon fuels over TiO2 and Ag/TiO2[J]. Fuel, 2016, 183: 550-556. | 71 | HUSSAIN A S, MCKEE M L, HEINZEL J M, et al. Density functional theory study of organosulfur selective adsorption on Ag-TiO2 adsorbents[J]. The Journal of Physical Chemistry C, 2014, 118(27): 14938-14947. | 72 | SUN X N, HUSSAIN A S, CHI M Y, et al. Persistent adsorptive desulfurization enhancement of TiO2 after one-time ex-situ UV-treatment[J]. Fuel, 2017, 193: 95-100. | 73 | REN X L, MIAO G, XIAO Z Y, et al. Catalytic adsorptive desulfurization of model diesel fuel using TiO2/SBA-15 under mild conditions[J]. Fuel, 2016, 174: 118-125. | 74 | REN X L, LIU Z W, DONG L, et al. Dynamic catalytic adsorptive desulfurization of real diesel over ultra-stable and low-cost silica gel-supported TiO2[J]. AIChE Journal, 2018, 64(6): 2146-2159. | 75 | ZHANG W, ZHANG H, XIAO J, et al. Carbon nanotube catalysts for oxidative desulfurization of a model diesel fuel using molecular oxygen[J]. Green Chemistry, 2014, 16(1): 211-220. | 76 | XIAO J, WU L M, WU Y, et al. Effect of gasoline composition on oxidative desulfurization using a phosphotungstic acid/activated carbon catalyst with hydrogen peroxide[J]. Applied Energy, 2014, 113: 78-85. | 77 | SUNDARARAMAN R, MA X L, SONG C S. Oxidative desulfurization of jet and diesel fuels using hydroperoxide generated in situ by catalytic air oxidation[J]. Industrial & Engineering Chemistry Research, 2010, 49(12): 5561-5568. | 78 | XIAO J, SITAMRAJU S, CHEN Y S, et al. Air-promoted adsorptive desulfurization over Ti0. 9Ce0.1O2 mixed oxides from diesel fuel under ambient conditions[J]. ChemCatChem, 2013, 5(12): 3582-3586. | 79 | XIAO J, SITAMRAJU S, CHEN Y S, et al. Air-promoted adsorptive desulfurization of diesel fuel over Ti-Ce mixed metal oxides[J]. AIChE Journal, 2015, 61(2): 631-639. | 80 | SITAMRAJU S, XIAO J, JANIK M J, et al. Active sites on Ti-Ce mixed metal oxides for reactive adsorption of thiophene and its derivatives: a DFT study[J]. The Journal of Physical Chemistry C, 2015, 119(11): 5903-5913. | 81 | YE F Y, MIAO G, WU L Q, et al. [O]-induced reactive adsorptive desulfurization of liquid fuel over AgXO@ SBA-15 under ambient conditions[J]. Chemical Engineering Science, 2017, 168: 225-234. | 82 | WU L Q, YE F Y, LEI D, et al. Regeneration of AgxO@ SBA-15 for reactive adsorptive desulfurization of fuel[J]. Petroleum Science, 2018, 15(4): 857-869. | 83 | WU L Q, MIAO G, DAI X, et al. Ultra-deep desulfurization of real diesel using two-layer silica gels under mild conditions[J]. Energy & Fuels, 2019, 33(8): 7287-7296. | 84 | NOVOCHINSKII I I, SONG C S, MA X L,et al. Low-temperature H2S removal from steam-containing gas mixtures with ZnO for fuel cell application. 2. Wash-coated monolith[J]. Energy & Fuels, 2004, 18(2): 584-589. | 85 | DONG L, MIAO G, REN X L, et al. Desulfurization kinetics and regeneration of silica gel-supported TiO2 extrudates for reactive adsorptive desulfurization of real diesel[J]. Industrial& Engineering Chemistry Research, 2020, 59(21): 10130-10141. |
|