[1] SUN Z, YAN Z, YAO J, et al. Growth of graphene from solid carbon sources[J]. Nature, 2010, 468(7323):549-552.
[2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[3] SUN Y, WU Q, SHI G. Graphene based new energy materials[J]. Energy & Environmental Science, 2011, 4(4):1113-1132.
[4] 贾进,杨晓阳,闫艳,等. 碳化物衍生碳的制备及其在气体存储与超级电容器领域的应用研究进展[J]. 化工进展, 2014, 33(10):2681-2686. JIA J, YANG X Y, YAN Y, et al. Progress of preparation of carbide-derived carbon and application in gas storage and supercapacitors[J]. Chemical Industry and Engineering Progress, 2014, 33(10):2681-2686.
[5] TOMMASO C,VALENTINA T. Multistable rippling of graphene on SiC:a density functional theory study[J]. J. Phys. Chem. C, 2016, 120(14):7670-7677.
[6] LIU Y Z, LI Y F, SU F Y. Easy one-step synthesis of N-doped graphene for supercapacitors[J]. Energy Storage Materials, 2016, 2:69-75.
[7] JIAO L Y, ZHANG L, WANG X R, et al. Narrow graphene nanoribbons from carbon nanotubes[J]. Nature, 2009, 459:877-880.
[8] QU L, LIU Y, BAEK J B, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS Nano, 2010, 4(3):1321-1326.
[9] NAGAIAH T C, KUNDU S, BRON M, et al. Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium[J]. Electrochemistry Communications, 2010, 12(3):338-341.
[10] PARK J, JANG Y, KIM Y, et al. Sulfur-doped graphene as a potential alternative metal-free electrocatalyst and Pt-catalyst supporting material for oxygen reduction reaction[J]. Physical Chemistry Chemical Physics, 2014, 16:103-109.
[11] POH H, SIMEK P, SOFER Z, et al. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas[J]. ACS Nano, 2013, 7:5262-5272.
[12] GAO H. Synthesis of S-doped graphene by liquid precursor[J]. Nanotechnology, 2012, 23:275-605.
[13] WANG R, HIGGINS D, HOQUE M. Controlled growth of platinum nanowire arrays on sulfur doped graphene as high performance electrocatalyst[J]. Scientific Reports, 2013, 3:2431.
[14] GONG K, DU F, XIA Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323:760-764.
[15] QU L, LIU Y, BAEK J, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS Nano, 2010, 4:1321-1326.
[16] LIANG J, YAN J, MIETEK J, et al. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance[J]. International Edition, 2012, 124:11664-11668.
[17] MIAO Q H, WANG L D, LIU Z Y, et al. Magnetic properties of N-doped graphene with high Curie temperature[J]. Scientific Reports, 2016, 6:21832.
[18] CHEN S, BI J, ZHAO Y, et al. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction[J]. Advanced Materials, 2012, 24(41):5593-5597.
[19] CHOI C H, PARK S H, WOO S I. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity[J]. ACS Nano, 2012, 6(8):7084-7091.
[20] WEHLING T, NOVOSELOV K, MOROZOV S, et al. Molecular doping of graphene[J]. Nano Letters, 2008, 8(1):173-177.
[21] WUNSCH B, STAUBER T, SOLS F, et al. Dynamical polarization of graphene at finite doping[J]. New Journal of Physics,2006,8(12):318-323.
[22] NAGAIAH T C, KUNDU S, BRON M, et al. Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium[J]. Electrochemistry Communications, 2010, 12(3):338-341.
[23] XU J, DONG G, JIN C, et al. Sulfur and nitrogen co-doped, few-layered graphene oxide as a highly efficient electrocatalyst for the oxygen-reduction reaction[J]. Chem. Sus. Chem., 2013, 6(3):493-499.
[24] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339.
[25] MOU Z G, CHEN, X Y, DU Y K, et al. Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea[J]. Applied Surface Science, 2011, 258(5):1704-1710.
[26] ZHANG M Y, SUN Y Y, SHI J J, et al. Selective glycerol oxidation using platinum nanoparticles supported on multi-walled carbon nanotubes and nitrogen-doped graphene hybrid[J]. Chinese Journal of Catalysis, 2017, 38(3):537-544.
[27] NIE R F, MIAO M, DU W C, et al. Selective hydrogenation of C==C bond over N-doped reduced graphene oxides supported Pd catalyst[J]. Applied Catalysis B:Environmental, 2016, 180:607-613. |