化工进展 ›› 2024, Vol. 43 ›› Issue (S1): 106-120.DOI: 10.16085/j.issn.1000-6613.2024-0822
梁永琪1,2(), 汤健1,2(), 夏恒1,2, 陈佳昆1,2, 乔俊飞1,2
收稿日期:
2024-05-20
修回日期:
2024-08-01
出版日期:
2024-11-20
发布日期:
2024-12-06
通讯作者:
汤健
作者简介:
梁永琪(1998—),男,硕士研究生,研究方向为数值仿真与建模。E-mail:1939097197@emails.bjut.edu.cn。
基金资助:
LIANG Yongqi1,2(), TANG Jian1,2(), XIA Heng1,2, CHEN Jiakun1,2, QIAO Junfei1,2
Received:
2024-05-20
Revised:
2024-08-01
Online:
2024-11-20
Published:
2024-12-06
Contact:
TANG Jian
摘要:
城市固废焚烧(municipal solid waste incineration,MSWI)过程产生的副产品颗粒物会造成大气污染和促使雾霾形成,从生成根源上探究其在焚烧炉内的形成机制与影响因素对降污减排极为关键。本文提出了基于耦合数值仿真的基准工况下焚烧炉内颗粒物浓度建模与分析。首先,进行面向颗粒物生成的工艺流程分析以确定影响颗粒物浓度的多个主要因素;其次,面向真实基准工况构建耦合流体动力焚烧炉代码(fluid dynamic incinerator code,FLIC)与Fluent软件的炉内颗粒物数值仿真模型;然后,利用单因素法分析上述主要因素对颗粒物浓度的影响;最后,基于正交实验和极差分析获取多个因素的最佳参数组合(颗粒喷射速度0.15m/s,60μm,射流)。采用北京某MSWI厂提供的实际数据验证了所提方法的有效性,结果表明在颗粒粒径为35~55μm之间时,颗粒物浓度随颗粒粒径的增大而逐渐增大,该结果能够为从工艺改进和优化控制的角度降低颗粒物浓度提供数据支撑。
中图分类号:
梁永琪, 汤健, 夏恒, 陈佳昆, 乔俊飞. 基于耦合数值仿真的基准工况下焚烧炉内颗粒物浓度建模与分析[J]. 化工进展, 2024, 43(S1): 106-120.
LIANG Yongqi, TANG Jian, XIA Heng, CHEN Jiakun, QIAO Junfei. Modeling and analysis of particulate matter concentration in incinerator under benchmark conditions based on coupled numerical simulation[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 106-120.
组成 | MSW |
---|---|
工业分析/% | |
水 | 49.7 |
挥发分 | 32.22 |
固定碳 | 7.82 |
灰 | 10.26 |
元素分析/% | |
C | 60.62 |
H | 8.09 |
O | 29.93 |
N | 1.12 |
S | 0.11 |
表1 MSW元素组成(质量分数)
组成 | MSW |
---|---|
工业分析/% | |
水 | 49.7 |
挥发分 | 32.22 |
固定碳 | 7.82 |
灰 | 10.26 |
元素分析/% | |
C | 60.62 |
H | 8.09 |
O | 29.93 |
N | 1.12 |
S | 0.11 |
参数 | 数值 |
---|---|
额定处理量/t·d-1 | 800 |
实际处理量/t·d-1 | 624 |
炉排类型 | 往复式炉排炉 |
炉排长×宽/m | 11×12.9 |
炉排速度/m·h-1 | 7.5 |
一次风流量/m3·h-1 | 65400 |
二次风流量/m3·h-1 | 5580 |
一次风温度/℃ | 473 |
一次风分布 | 24.31, 43.35, 19.27, 13.07 |
表2 焚烧炉的规格和基准工况运行参数
参数 | 数值 |
---|---|
额定处理量/t·d-1 | 800 |
实际处理量/t·d-1 | 624 |
炉排类型 | 往复式炉排炉 |
炉排长×宽/m | 11×12.9 |
炉排速度/m·h-1 | 7.5 |
一次风流量/m3·h-1 | 65400 |
二次风流量/m3·h-1 | 5580 |
一次风温度/℃ | 473 |
一次风分布 | 24.31, 43.35, 19.27, 13.07 |
参数 | 数值 |
---|---|
进料速度/kg·h-1 | 24000 |
一次风量/m3·h-1 | 65400 |
一次风温度/℃ | 473 |
炉排速度/m·h-1 | 7.5 |
MSW粒径/mm | 25 |
混合系数 | 2~6 |
辐射率/% | 80 |
含水率/% | 49.7 |
表3 FLIC主要运行参数
参数 | 数值 |
---|---|
进料速度/kg·h-1 | 24000 |
一次风量/m3·h-1 | 65400 |
一次风温度/℃ | 473 |
炉排速度/m·h-1 | 7.5 |
MSW粒径/mm | 25 |
混合系数 | 2~6 |
辐射率/% | 80 |
含水率/% | 49.7 |
设置参数 | 温度/K |
---|---|
二次风入口 | 312.5 |
出口 | 1000 |
一烟道壁面 | 750 |
二烟道壁面 | 600 |
三烟道壁面 | 450 |
表4 壁面温度设置
设置参数 | 温度/K |
---|---|
二次风入口 | 312.5 |
出口 | 1000 |
一烟道壁面 | 750 |
二烟道壁面 | 600 |
三烟道壁面 | 450 |
序号 | 设置参数 | 设置值 |
---|---|---|
1 | 喷射源类型 | Group |
2 | 喷射位置 | 炉排上方 |
3 | 材料 | Ash-soild |
4 | 直径分布 | Rosin-rammler |
5 | 干燥段上方喷射流数量 | 10 |
6 | 燃烧段1上方喷射流数量 | 28 |
7 | 燃烧段2上方喷射流数量 | 12 |
8 | 燃烬段上方喷射流数量 | 12 |
表5 DPM模型的基础设置
序号 | 设置参数 | 设置值 |
---|---|---|
1 | 喷射源类型 | Group |
2 | 喷射位置 | 炉排上方 |
3 | 材料 | Ash-soild |
4 | 直径分布 | Rosin-rammler |
5 | 干燥段上方喷射流数量 | 10 |
6 | 燃烧段1上方喷射流数量 | 28 |
7 | 燃烧段2上方喷射流数量 | 12 |
8 | 燃烬段上方喷射流数量 | 12 |
序号 | 设置参数 | 设置值 |
---|---|---|
1 | 温度/K | 300 |
2 | 速度大小/m·s-1 | 0 |
3 | 干燥段上方颗粒流量/kg·s-1 | 0.02 |
4 | 燃烧段1上方颗粒流量/kg·s-1 | 0.04 |
5 | 燃烧段2上方颗粒流量/kg·s-1 | 0.02 |
6 | 燃烬段上方颗粒流量/kg·s-1 | 0.005 |
7 | 最小直径/μm | 35 |
8 | 最大直径/μm | 75 |
9 | 平均直径/μm | 45 |
10 | 发散系数 | 3.5 |
11 | 曳力准则 | Grace |
12 | 旋转曳力准则 | Dennis-et-al |
13 | Magnus升力定律 | Oesterle-Bui-Dinh |
14 | 粗糙壁面模型 | 开启 |
15 | 离散随机轨迹模型 | 开启 |
16 | 尝试次数 | 3 |
17 | 时间尺度常数 | 0.15 |
表6 炉排上方颗粒物的点属性及物理模型设置
序号 | 设置参数 | 设置值 |
---|---|---|
1 | 温度/K | 300 |
2 | 速度大小/m·s-1 | 0 |
3 | 干燥段上方颗粒流量/kg·s-1 | 0.02 |
4 | 燃烧段1上方颗粒流量/kg·s-1 | 0.04 |
5 | 燃烧段2上方颗粒流量/kg·s-1 | 0.02 |
6 | 燃烬段上方颗粒流量/kg·s-1 | 0.005 |
7 | 最小直径/μm | 35 |
8 | 最大直径/μm | 75 |
9 | 平均直径/μm | 45 |
10 | 发散系数 | 3.5 |
11 | 曳力准则 | Grace |
12 | 旋转曳力准则 | Dennis-et-al |
13 | Magnus升力定律 | Oesterle-Bui-Dinh |
14 | 粗糙壁面模型 | 开启 |
15 | 离散随机轨迹模型 | 开启 |
16 | 尝试次数 | 3 |
17 | 时间尺度常数 | 0.15 |
水平 | A/m·s-1 | B/μm | C |
---|---|---|---|
1 | 0.05 | 35 | trap |
2 | 0.1 | 40 | reflect |
3 | 0.15 | 45 | wall-jet |
4 | 0.2 | 50 | — |
5 | 0.25 | 55 | — |
6 | 0.3 | 60 | — |
7 | 0.35 | 65 | — |
表7 混合正交表
水平 | A/m·s-1 | B/μm | C |
---|---|---|---|
1 | 0.05 | 35 | trap |
2 | 0.1 | 40 | reflect |
3 | 0.15 | 45 | wall-jet |
4 | 0.2 | 50 | — |
5 | 0.25 | 55 | — |
6 | 0.3 | 60 | — |
7 | 0.35 | 65 | — |
案例 | A/m·s-1 | B/μm | C | 颗粒物浓度/kg·m-3 |
---|---|---|---|---|
1 | 1 | 1 | 1 | 0.0004364565 |
2 | 1 | 2 | 2 | 0.005192173 |
3 | 1 | 3 | 3 | 0.004967875 |
47 | 5 | 7 | 1 | 0.001560492 |
48 | 6 | 1 | 1 | 0.0008457572 |
49 | 7 | 5 | 1 | 0.001173455 |
表8 正交实验方案及结果
案例 | A/m·s-1 | B/μm | C | 颗粒物浓度/kg·m-3 |
---|---|---|---|---|
1 | 1 | 1 | 1 | 0.0004364565 |
2 | 1 | 2 | 2 | 0.005192173 |
3 | 1 | 3 | 3 | 0.004967875 |
47 | 5 | 7 | 1 | 0.001560492 |
48 | 6 | 1 | 1 | 0.0008457572 |
49 | 7 | 5 | 1 | 0.001173455 |
指标 | A | B | C |
---|---|---|---|
极差R | 0.001733 | 0.002255 | 0.004010 |
主次顺序 | C>B>A | ||
最优水平 |
表9 极差分析结果
指标 | A | B | C |
---|---|---|---|
极差R | 0.001733 | 0.002255 | 0.004010 |
主次顺序 | C>B>A | ||
最优水平 |
1 | CHHAY Leaksmy, REYAD Md Amjad Hossain, Rathny SUY, et al. Municipal solid waste generation in China: Influencing factor analysis and multi-model forecasting[J]. Journal of Material Cycles and Waste Management. 2018, 20(3): 1761-1770. |
2 | 汤健, 夏恒, 余文, 等. 城市固废焚烧过程智能优化控制研究现状与展望[J]. 自动化学报, 2023, 49(10): 2019-2059. |
TANG Jian, XIA Heng, YU Wen, et al. Research status and prospects of intelligent optimization control for municipal solid waste incineration process[J]. Acta Automatica Sinica. 2023, 49(10): 2019-2059. | |
3 | LI Yang, ZHANG Jianliang, LIU Zhengjian, et al. Harmless treatment of municipal solid waste incinerator fly ash through shaft furnace[J]. Waste Management, 2021, 124: 110-117. |
4 | ZHANG Ming, WEI Junxiao, LI Huan, et al. Comparing and optimizing municipal solid waste (MSW) management focused on air pollution reduction from MSW incineration in China[J]. Science of The Total Environment, 2024, 907: 167952. |
5 | KHAN Shamshad, ANJUM Raheel, RAZA Syed Turad, et al. Technologies for municipal solid waste management: Current status, challenges, and future perspectives[J]. Chemosphere. 2022, 288: 132403. |
6 | PAN Xiaotong, TANG Jian, XIA Heng, et al. Combustion state identification of MSWI processes using ViT-IDFC[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106893. |
7 | ZHUANG Jiabin, TANG Jian, ALJERF Loai. Comprehensive review on mechanism analysis and numerical simulation of municipal solid waste incineration process based on mechanical grate [J]. Fuel, 2022, 320: 123826. |
8 | 乔俊飞, 郭子豪, 汤健. 面向城市固废焚烧过程的二 英排放浓度检测方法综述[J]. 自动化学报, 2020, 46(6): 1063-1089. |
QIAO Junfei, GUO Zihao, TANG Jian. Dioxin emission concentration measurement approaches for municipal solid wastes incineration process: a survey[J]. Acta Automatica Sinica, 2020, 46(6): 1063-1089. | |
9 | LIU Yuanyuan, WANG Jiajia, LIN Xiang, et al. Microstructures and thermal properties of municipal solid waste incineration fly ash[J]. Journal of Central South University, 2012, 19(3): 855-862. |
10 | WAN Xiao, WANG Wei, YE Tunmin, et al. A study on the chemical and mineralogical characterization of MSWI fly ash using a sequential extraction procedure[J]. Journal of Hazardous Materials, 2006, 134 (1/2/3): 197-201. |
11 | BERNASCONI Davide, CAVIGLIA Caterina, DESTEFANIS Enrico, et al. Influence of speciation distribution and particle size on heavy metal leaching from MSWI fly ash[J]. Waste Management, 2022, 138: 318-327. |
12 | SHUNDA Lin, JIANG Xuguang, ZHAO Yimeng, et al. Disposal technology and new progress for dioxins and heavy metals in fly ash from municipal solid waste incineration: A critical review[J]. Environmental Pollution, 2022, 311: 119878. |
13 | BADREDDINE R, FRANÇOIS D. Assessment of the PCDD/F fate from MSWI residue used in road construction in France[J]. Chemosphere. 2009, 74(3): 363-369. |
14 | DAHLAN Astryd Viandila, KITAMURA Hiroki, TIAN Yu, et al. Heterogeneities of fly ash particles generated from a fluidized bed combustor of municipal solid waste incineration[J]. Journal of Material Cycles and Waste Management, 2020, 22(3): 836-850. |
15 | ZHAO Hang, TIAN Yang, WANG Rong, et al. Seasonal variation of the mobility and toxicity of metals in Beijing’s municipal solid waste incineration fly ash[J]. Sustainability, 2021, 13(12): 6532. |
16 | ZHANG Ruichang, WEI Xuefeng, HAO Qiang, et al. Bioleaching of heavy metals from municipal solid waste incineration fly ash: Availability of recoverable sulfur prills and form transformation of heavy metals[J]. Metals. 2020, 10(6): 815. |
17 | WANG Weifeng, YU Jie, CUI Yang, et al. Characteristics of fine particulate matter and its sources in an industrialized coastal city, Ningbo, Yangtze River Delta, China[J]. Atmospheric Research, 2018, 203: 105-117. |
18 | NGUYEN Thi Hue, PHAM Quoc Viet, NGUYEN Thi Phuong Mai, et al. Distribution characteristics and ecological risks of heavy metals in bottom ash, fly ash, and particulate matter released from municipal solid waste incinerators in northern Vietnam[J]. Environmental Geochemistry and Health, 2023, 45(5): 2579-2590. |
19 | CHANG Feng Yim, Ming Yen WEY. Comparison of the characteristics of bottom and fly ashes generated from various incineration processes[J]. Journal of Hazardous Materials, 2006, 138(3): 594-603. |
20 | CHEN Jiakun, TANG Jian, XIA Heng, et al. A non-manipulated variable analysis of solid-phase combustion in the furnace of municipal solid-waste incineration process based on the biorthogonal numerical-simulation experiment[J]. Sustainability, 2023, 15(19): 14159. |
21 | LIANG Yongqi, TANG Jian, XIA Heng, et al. Three-dimensional numerical modeling and analysis for the municipal solid-waste incineration of the grate furnace for particulate-matter generation. Sustainability, 2023, 15(16): 12337. |
22 | HUAI X L, XU W L, QU Z Y, et al. Numerical simulation of municipal solid waste combustion in a novel two-stage reciprocating incinerator[J]. Waste Management, 2008, 28(1): 15-29. |
23 | WANG Jingfu, XUE Yanqing, ZHANG Xinxin, et al. Numerical study of radiation effect on the municipal solid waste combustion characteristics inside an incinerator[J]. Waste Management, 2015, 44: 116-124. |
24 | GU Tianbao, MA Wenchao, BERNING Torsten, et al. Advanced simulation of a 750 t/d municipal solid waste grate boiler to better accommodate feedstock changes due to waste classification[J]. Energy, 2022, 254: 124338. |
25 | HUAI X L, XU W L, QU Z Y,et al. Analysis and optimization of municipal solid waste combustion in a reciprocating incinerator[J]. Chemical Engineering Science, 2008, 63(12): 3100-3113. |
26 | TANG Jian, ZHUANG Jiabin, ALJERF Loai, et al. Numerical simulation modelling on whole municipal solid waste incineration process by coupling multiple software for the analysis of grate speed and air volume ratio[J]. Process Safety and Environmental Protection, 2023, 176: 506-527. |
27 | 杨旭, 余昭胜, 何玉荣, 等. 垃圾焚烧炉中城市生活垃圾掺烧高热值工业固废的数值模拟[J]. 洁净煤技术. 2023, 29(9): 98-108. |
YANG Xu, YU Zhaosheng, HE Yurong, et al. Numerical simulation of municipal domestic waste blending with combustion ofhigh calorific value industrial solid waste in waste incineration furnace[J]. Clean Coal Technology, 2023, 29(9): 98-108. | |
28 | YANG Y B, GOH Y R, ZAKARIA R, et al. Mathematical modelling of MSW incineration on a travelling bed[J]. Waste Management, 2002, 22(4): 369-380. |
29 | YANG Yaobin, SHARIFI VidaN, SWITHENBANK Jim. Numerical simulation of municipal solid waste incineration in a moving-grate furnace and the effect of waste moisture content[J]. Progress in Computational Fluid Dynamics, 2007, 7(5): 261-273. |
30 | YANG Yaobin, SHARIFI Vida N, SWITHENBANK Jim. Converting moving-grate incineration from combustion to gasification-Numerical simulation of the burning characteristics[J]. Waste Management, 2007, 27(5): 645-655. |
31 | WANG Tiantian, ZHOU Guo, JIANG Chen, et al. A coupled cell-based smoothed finite element method and discrete phase model for incompressible laminar flow with dilute solid particles[J]. Engineering Analysis with Boundary Elements, 2022, 143: 190-206. |
32 | MORSI S A, ALEXANDER A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55(2): 193-208. |
[1] | 姚福春, 毕莹莹, 刘超, 唐晨, 李泽莹, 张耀宗, 孙晓明. 矩阵分析法优化臭氧膜接触传质技术[J]. 化工进展, 2024, 43(11): 6553-6562. |
[2] | 孙继鹏, 韩靖, 唐杨超, 闫汉博, 张杰瑶, 肖苹, 吴峰. 硫黄湿法成型过程数值模拟与操作参数优化[J]. 化工进展, 2023, 42(S1): 189-196. |
[3] | 陈佳昆, 汤健, 夏恒, 乔俊飞. 城市固废炉排炉焚烧过程二𫫇英排放浓度数值仿真[J]. 化工进展, 2023, 42(2): 1061-1072. |
[4] | 尹晓云, 付林浩, 李佳忆, 程思杰, 敬加强, MASTOBAEV Boris N, 孙杰. 稠油水环输送管道再启动压降特性分析[J]. 化工进展, 2023, 42(11): 5669-5679. |
[5] | 郑瑾, 韩瑞瑞, 李丹丹, 王馨妤, 高春阳, 杜显元, 张晓飞, 邹德勋. 过氧化尿素与微生物联合修复石油污染土壤[J]. 化工进展, 2022, 41(9): 5085-5093. |
[6] | 丁兴江, 章学来, 朱嘉豪, 毛发, 房满庭, 冯天平. 三水合乙酸钠复合相变材料过冷特性实验统计分析[J]. 化工进展, 2022, 41(11): 5946-5960. |
[7] | 刘少斌, 齐宏, 余智强, 何明键, 于喜奎. 基于Taguchi方法的微小通道性能分析与参数优化[J]. 化工进展, 2021, 40(12): 6409-6422. |
[8] | 李丽, 刘宝树, 郑学明, 孙华. 舒巴坦钠溶析结晶工艺优化[J]. 化工进展, 2019, 38(06): 2905-2914. |
[9] | 王治红, 丁晓明, 吴明鸥, 沈晓燕. 有机朗肯循环在多品位余热发电中的应用[J]. 化工进展, 2019, 38(05): 2189-2196. |
[10] | 郭睿, 宋博, 郭煜, 李云鹏, 土瑞香, 王映月, 马兰. 木质素磺酸盐接枝共聚物的合成及工艺优化[J]. 化工进展, 2018, 37(05): 1962-1967. |
[11] | 刘忠慧, 于旷世, 张海霞, 朱治平. 基于Aspen Plus的循环流化床工业气化炉模拟[J]. 化工进展, 2018, 37(05): 1709-1717. |
[12] | 程琛, 闫正. 复频超声降解土霉素废水[J]. 化工进展, 2015, 34(04): 1143-1146,1164. |
[13] | 刘军霞, 姚庆鑫, 杨金, 周磊, 谢建军. 多指标正交实验优化可发性三聚氰胺甲醛树脂的制备[J]. 化工进展, 2015, 34(02): 474-478. |
[14] | 古蒙蒙1,涂文辉1,桂绍庸1,蔡卫权1,林元虹1,李玉军1,曹宏2?. 环保型高效稠油垢弱酸性水基清洗剂的研制[J]. 化工进展, 2014, 33(06): 1563-1566. |
[15] | 冉二艳,张宝昌,周如彬,赵莹,刘扬. 氨基聚醚共改性硅油的合成与性能[J]. 化工进展, 2014, 33(02): 445-452. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |