化工进展 ›› 2024, Vol. 43 ›› Issue (11): 6119-6128.DOI: 10.16085/j.issn.1000-6613.2023-1859
• 能源加工与技术 • 上一篇
张文韬1(), 周家辉1, 张润之1, 王珞珈2, 徐钢1(
)
收稿日期:
2023-10-20
修回日期:
2024-01-12
出版日期:
2024-11-15
发布日期:
2024-12-07
通讯作者:
徐钢
作者简介:
张文韬(2000—),男,硕士研究生,研究方向为氢集成优化设计。E-mail:zhangwt_ncepu@163.com。
基金资助:
ZHANG Wentao1(), ZHOU Jiahui1, ZHANG Runzhi1, WANG Luojia2, XU Gang1(
)
Received:
2023-10-20
Revised:
2024-01-12
Online:
2024-11-15
Published:
2024-12-07
Contact:
XU Gang
摘要:
为实现“碳达峰、碳中和”目标,实现能源低碳、清洁转型,本文提出一种面向电制氢(power-to-hydrogen,P2H)系统的计及能耗特性的风光制氢碱性电解槽集群优化策略。系统离网式运行,以风力、光伏发电提供电能,使用蓄电池作为储能设备进行电能的削峰填谷,保证碱性电解槽稳定连续生产氢气。基于风光发电、电解槽动态制氢效率、电解槽启停等模型,以系统整体净收益最大为目标函数,对电解槽进行多列运行优化调度。结果表明,在不改变系统设备容量的前提下,使用碱性电解槽集群优化策略调度后,系统年收益提高近5%,同时弃电率与电解槽启停次数相应降低。新型集群优化策略可以更充分地消纳新能源电力且收益更高。研究成果有望为碱性电解槽高效集群生产运行调度策略提供一定的指导。
中图分类号:
张文韬, 周家辉, 张润之, 王珞珈, 徐钢. 计及能耗特性的风光制氢碱性电解槽集群优化策略[J]. 化工进展, 2024, 43(11): 6119-6128.
ZHANG Wentao, ZHOU Jiahui, ZHANG Runzhi, WANG Luojia, XU Gang. Optimization strategy of wind and solar hydrogen production alkaline electrolyzer cluster considering energy consumption characteristics[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6119-6128.
参数 | 数值 |
---|---|
Tstack/℃ | 85 |
P/bar | 16 |
r1/Ω·m² | 4.45153×10-5 |
r2/Ω·m²·℃-1 | 6.88874×10-9 |
d1/Ω·m² | -3.12996×10-6 |
d2/Ω·m²·bar-1 | 4.47137×10-7 |
s/V | 0.33824 |
t1/m²·A-1 | -0.01539 |
t2/m²·℃·A-1 | 2.00181 |
t3/m²·℃2·A-1 | 15.24178 |
f11/A2·m-4 | 478645.74 |
f12/A2·m-4·℃-1 | -2953.15 |
f21 | 1.0396 |
f22/℃-1 | -0.00104 |
i/A·m-² | 2600 |
Acell/m2 | 0.1 |
表1 碱性电解槽电化学模型考虑的参数[16]
参数 | 数值 |
---|---|
Tstack/℃ | 85 |
P/bar | 16 |
r1/Ω·m² | 4.45153×10-5 |
r2/Ω·m²·℃-1 | 6.88874×10-9 |
d1/Ω·m² | -3.12996×10-6 |
d2/Ω·m²·bar-1 | 4.47137×10-7 |
s/V | 0.33824 |
t1/m²·A-1 | -0.01539 |
t2/m²·℃·A-1 | 2.00181 |
t3/m²·℃2·A-1 | 15.24178 |
f11/A2·m-4 | 478645.74 |
f12/A2·m-4·℃-1 | -2953.15 |
f21 | 1.0396 |
f22/℃-1 | -0.00104 |
i/A·m-² | 2600 |
Acell/m2 | 0.1 |
设备 | 投资成本 | 运维成本/投资成本 |
---|---|---|
光伏发电机组 | 3800CNY/kW | 1% |
风力发电机组 | 4800CNY/kW | 2% |
电解槽 | 3000CNY/kW | 2% |
蓄电池 | 2000CNY/(kW·h) | 4% |
表2 关键设备经济性指标
设备 | 投资成本 | 运维成本/投资成本 |
---|---|---|
光伏发电机组 | 3800CNY/kW | 1% |
风力发电机组 | 4800CNY/kW | 2% |
电解槽 | 3000CNY/kW | 2% |
蓄电池 | 2000CNY/(kW·h) | 4% |
设备 | 项目 | 数值 |
---|---|---|
电解槽 | 运行负荷范围/% | 25~100 |
启动耗时/min | 60 | |
启动电能损失系数/% | 12 | |
蓄电池 | 自损率/% | 0.1 |
充放电效率/% | 95 |
表3 关键设备技术参数
设备 | 项目 | 数值 |
---|---|---|
电解槽 | 运行负荷范围/% | 25~100 |
启动耗时/min | 60 | |
启动电能损失系数/% | 12 | |
蓄电池 | 自损率/% | 0.1 |
充放电效率/% | 95 |
优化结果 | 参比方案 | 优化方案 | 差值 |
---|---|---|---|
弃电率/% | 1.16 | 0.03 | -1.13 |
电解槽启停次数/次 | 261 | 178 | -83 |
电解槽利用小时数/h | 3957 | 4012 | +45 |
氢气年产量/t | 6969.64 | 7106.72 | +137.08 |
年收益/×104 CNY | 9717.36 | 10197.16 | +479.8 |
表4 调度优化结果对比
优化结果 | 参比方案 | 优化方案 | 差值 |
---|---|---|---|
弃电率/% | 1.16 | 0.03 | -1.13 |
电解槽启停次数/次 | 261 | 178 | -83 |
电解槽利用小时数/h | 3957 | 4012 | +45 |
氢气年产量/t | 6969.64 | 7106.72 | +137.08 |
年收益/×104 CNY | 9717.36 | 10197.16 | +479.8 |
1 | 胡兵, 徐立军, 何山, 等. 碳达峰与碳中和目标下PEM电解水制氢研究进展[J]. 化工进展, 2022, 41(9): 4595-4604. |
HU Bing, XU Lijun, HE Shan, et al. Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4595-4604. | |
2 | 王培灿, 雷青, 刘帅, 等. 电解水制氢MoS2催化剂研究与氢能技术展望[J]. 化工进展, 2019, 38(1): 278-290. |
WANG Peican, LEI Qing, LIU Shuai, et al. MoS2-based electrocatalysts for hydrogen evolution and the prospect of hydrogen energy technology[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 278-290. | |
3 | ZENG Kai, ZHANG Dongke. Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Progress in Energy and Combustion Science, 2010, 36(3): 307-326. |
4 | 郭博文, 罗聃, 周红军. 可再生能源电解制氢技术及催化剂的研究进展[J]. 化工进展, 2021, 40(6): 2933-2951. |
GUO Bowen, LUO Dan, ZHOU Hongjun. Recent advances in renewable energy electrolysis hydrogen production technology and related electrocatalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2933-2951. | |
5 | 邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景[J]. 天然气工业, 2022, 42(4): 1-20. |
ZOU Caineng, LI Jianming, ZHANG Xi, et al. Industrial status, technological progress, challenges and prospects of hydrogen energy[J]. Natural Gas Industry, 2022, 42(4): 1-20. | |
6 | SANTOS Ana L, CEBOLA Maria-João, SANTOS Diogo M F. Towards the hydrogen economy—A review of the parameters that influence the efficiency of alkaline water electrolyzers[J]. Energies, 2021, 14(11): 3193. |
7 | 袁铁江, 万志, 王进君, 等. 考虑电解槽启停特性的制氢系统日前出力计划[J]. 中国电力, 2022, 55(1): 101-109. |
YUAN Tiejiang, WAN Zhi, WANG Jinjun, et al. The day-ahead output plan of hydrogen production system considering the start-stop characteristics of electrolytic cell[J]. Electric Power, 2022, 55(1): 101-109. | |
8 | 年珩, 陈磊磊, 赵建勇, 等. 基于电解槽状态识别的风光制氢系统能量管理优化[J]. 电测与仪表, 2023, 60(10): 10-16. |
NIAN Heng, CHEN Leilei, ZHAO Jianyong, et al. Energy management optimization of wind-solar hydrogen production system based on electrolytic cell state recognition[J]. Electrical Measurement & Instrumentation, 2023, 60(10): 10-16. | |
9 | 李军舟, 赵晋斌, 陈逸文, 等. 考虑动态功率区间和制氢效率的电转氢(P2H)设备容量配置优化[J]. 电工技术学报, 2023, 38(18): 4864-4874, 4920. |
LI Junzhou, ZHAO Jinbin, CHEN Yiwen, et al. Optimal capacity configuration of P2H equipment considering dynamic power range and hydrogen production efficiency[J]. Transactions of China Electrotechnical Society, 2023, 38(18): 4864-4874, 4920. | |
10 | 江岳文, 杨国铭, 陈宇辛, 等. 考虑电解槽动态制氢效率的氢网运行优化[J]. 中国电机工程学报, 2023, 43(8): 3014-3027. |
JIANG Yuewen, YANG Guoming, CHEN Yuxin, et al. Optimal operation for the hydrogen network under consideration of the dynamic hydrogen production efficiency of electrolyzers[J]. Proceedings of the CSEE, 2023, 43(8): 3014-3027. | |
11 | 沈小军, 聂聪颖, 吕洪. 计及电热特性的离网型风电制氢碱性电解槽阵列优化控制策略[J]. 电工技术学报, 2021, 36(3): 463-472. |
SHEN Xiaojun, NIE Congying, Hong LÜ. Coordination control strategy of wind power-hydrogen alkaline electrolyzer bank considering electrothermal characteristics[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 463-472. | |
12 | URSUA Alfredo, GANDIA Luis M, SANCHIS Pablo. Hydrogen production from water electrolysis: Current status and future trends[J]. Proceedings of the IEEE, 2012, 100(2): 410-426. |
13 | SHARGH S, KHORSHID GHAZANI B, MOHAMMADI-IVATLOO B, et al. Probabilistic multi-objective optimal power flow considering correlated wind power and load uncertainties[J]. Renewable Energy, 2016, 94: 10-21. |
14 | LU Zhenjun, ZHU Qing, ZHANG Weiguo, et al. Economic operation strategy of integrated hydrogen energy system considering the uncertainty of PV power output[J]. Energy Reports, 2023, 9: 463-471. |
15 | Øystein ULLEBERG. Modeling of advanced alkaline electrolyzers: A system simulation approach[J]. International Journal of Hydrogen Energy, 2003, 28(1): 21-33. |
16 | Mónica SÁNCHEZ, AMORES Ernesto, Lourdes RODRÍGUEZ, et al. Semi-empirical model and experimental validation for the performance evaluation of a 15kW alkaline water electrolyzer[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20332-20345. |
17 | 林涛, 赵丹阳, 严寒. 风电消纳下多型号制氢机组阵列优化调度研究[J]. 太阳能学报, 2022, 43(11): 466-473. |
LIN Tao, ZHAO Danyang, YAN Han. Research on optimal scheduling of multi-model hydrogen generator array under wind power consumption[J]. Acta Energiae Solaris Sinica, 2022, 43(11): 466-473. | |
18 | 孙惠娟, 阙炜新, 彭春华. 考虑电氢耦合和碳交易的电氢能源系统置信间隙鲁棒规划[J]. 电网技术, 2023, 47(11): 4477-4490. |
SUN Huijuan, QUE Weixin, PENG Chunhua. Confidence gap robust planning of electricity and hydrogen energy system considering electricity-hydrogen coupling and carbon trading[J]. Power System Technology, 2023, 47(11): 4477-4490. | |
19 | 李奇, 赵淑丹, 蒲雨辰, 等. 考虑电氢耦合的混合储能微电网容量配置优化[J]. 电工技术学报, 2021, 36(3): 486-495. |
LI Qi, ZHAO Shudan, PU Yuchen, et al. Capacity optimization of hybrid energy storage microgrid considering electricity-hydrogen coupling[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 486-495. | |
20 | 左逢源, 张玉琼, 赵强, 等. 计及源荷不确定性的综合能源生产单元运行调度与容量配置两阶段随机优化[J]. 中国电机工程学报, 2022, 42(22): 8205-8215. |
ZUO Fengyuan, ZHANG Yuqiong, ZHAO Qiang, et al. Two-stage stochastic optimization for operation scheduling and capacity allocation of integrated energy production unit considering supply and demand uncertainty[J]. Proceedings of the CSEE, 2022, 42(22): 8205-8215. | |
21 | 国家能源局. 关于开展燃料电池汽车示范应用的通知[EB/OL]. [2020-09-21]. . |
National Energy Administration. Notice on launching fuel cell vehicle demonstration projects[EB/OL]. [2020-09-21]. . | |
22 | FAN Jingli, YU Pengwei, LI Kai, et al. A levelized cost of hydrogen (LCOH) comparison of coal-to-hydrogen with CCS and water electrolysis powered by renewable energy in China[J]. Energy, 2022, 242: 123003. |
23 | 张轩, 王凯, 樊昕晔, 等. 电解水制氢成本分析[J]. 现代化工, 2021, 41(12): 7-11. |
ZHANG Xuan, WANG Kai, FAN Xinye, et al. Cost analysis on hydrogen production via water electrolysis[J]. Modern Chemical Industry, 2021, 41(12): 7-11. | |
24 | 陈晨, 李端超, 王海伟, 等. 考虑不确定性的综合能源系统日前经济调度[J]. 电力科学与技术学报, 2021, 36(2): 24-30. |
CHEN Chen, LI Duanchao, WANG Haiwei, et al. Study on day-ahead economic dispatch of integrated energy system considering uncertainty[J]. Journal of Electric Power Science and Technology, 2021, 36(2): 24-30. | |
25 | 王明华. 新能源电解水制氢技术经济性分析[J]. 现代化工, 2023, 43(5): 1-5. |
WANG Minghua. Technical economic analysis on hydrogen production from water electrolysis by new energy[J]. Modern Chemical Industry, 2023, 43(5): 1-5. | |
26 | 郑博, 白章, 袁宇, 等. 多类型电解协同的风光互补制氢系统与容量优化[J]. 中国电机工程学报, 2022, 42(23): 8486-8496. |
ZHENG Bo, BAI Zhang, YUAN Yu, et al. Hydrogen production system and capacity optimization based on synergistic operation with multi-type electrolyzers under wind-solar power[J]. Proceedings of the CSEE, 2022, 42(23): 8486-8496. | |
27 | 徐钢, 张钟, 吴志聪, 等. 基于绿氢和生物质富氧燃烧技术的零碳甲醇合成系统[J]. 动力工程学报, 2022, 42(10): 925-932. |
XU Gang, ZHANG Zhong, WU Zhicong, et al. Zero carbon methanol synthesis system based on green hydrogen and biomass oxygen enriched combustion technology[J]. Journal of Chinese Society of Power Engineering, 2022, 42(10): 925-932. | |
28 | 张轩, 樊昕晔, 吴振宇, 等. 氢能供应链成本分析及建议[J]. 化工进展, 2022, 41(5): 2364-2371. |
ZHANG Xuan, FAN Xinye, WU Zhenyu, et al. Hydrogen energy supply chain cost analysis and suggestions[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2364-2371. |
[1] | 李新月, 李振京, 韩沂杭, 郭永强, 闫瑜, 哈力米热·卡热木拉提, 赵会吉, 柴永明, 刘东, 殷长龙. 油脂加氢脱氧生产绿色柴油催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 351-364. |
[2] | 王月, 张学瑞, 宋玺文, 陈渤燕, 李庆勋, 钟海军, 胡孝伟, 何帅. 电解制氢合成氨技术综述与展望[J]. 化工进展, 2024, 43(S1): 180-188. |
[3] | 王于华, 周雪, 谷传涛. 用于高性能全聚合物太阳能电池的区域规整的聚小分子受体研究进展[J]. 化工进展, 2024, 43(S1): 391-402. |
[4] | 梁宏成, 赵冬妮, 权银, 李敬妮, 胡欣怡. SEI膜形貌与结构对锂离子电池性能的影响[J]. 化工进展, 2024, 43(9): 5049-5062. |
[5] | 李浩然, 王岩, 张涛, 吕莉, 唐文翔, 唐盛伟. 以Cu(Ac)2-Zn(Ac)2溶液为水相的W/O微液滴尺度的有效调控[J]. 化工进展, 2024, 43(9): 5168-5176. |
[6] | 郭沛, 崔灿灿, 孔德洁, 黄晟. “双碳”背景下固态锂电池用硫化物固态电解质的发展趋势[J]. 化工进展, 2024, 43(9): 5193-5206. |
[7] | 李子寒, 舒建成, 曹文星, 杨慧敏, 陈梦君. 菱锰矿浸出前后理化特性及界面水化行为变化规律[J]. 化工进展, 2024, 43(9): 5320-5328. |
[8] | 高玉李, 王红秋, 黄格省, 鲜楠莹, 师晓玉. 全固态锂电池的产业化和技术研究进展[J]. 化工进展, 2024, 43(9): 4767-4778. |
[9] | 孙启超, 聂美华, 伍联营, 胡仰栋. 风光储一体化水电联产系统的优化设计及调度[J]. 化工进展, 2024, 43(9): 4882-4891. |
[10] | 王正峰, 谢雨杭, 李伟科, 范永春, 康钟尹, 付乾. 多孔炭修饰的吸附催化一体化电极高效电解碳酸氢盐[J]. 化工进展, 2024, 43(9): 4892-4899. |
[11] | 向浩寅, 陈良勇. Ni、Ce、Zn和Cu修饰Fe2O3/Al2O3载氧体的甲烷化学链制氢特性[J]. 化工进展, 2024, 43(8): 4320-4332. |
[12] | 龚德成, 沈倩, 朱贤青, 黄云, 夏奡, 张敬苗, 朱恂, 廖强. 微藻超临界水气化制取富氢合成气的研究进展[J]. 化工进展, 2024, 43(7): 3709-3728. |
[13] | 陈良, 罗冬梅, 王正豪, 钟山, 唐思扬, 梁斌. 工业副产气化学链回收氢气技术研究进展[J]. 化工进展, 2024, 43(7): 3729-3746. |
[14] | 王颖杰, 祝新利. 溶胶-凝胶法制备高分散Ni-Cu/SiO2 促进间甲酚直接脱氧制甲苯[J]. 化工进展, 2024, 43(7): 3824-3833. |
[15] | 邵威, 马壮, 郑宏玮, 刘光举, 高翔, 谢健, 和庆钢. 有机电极材料在水系电池中的应用研究进展[J]. 化工进展, 2024, 43(7): 3872-3890. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 190
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 174
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |