化工进展 ›› 2024, Vol. 43 ›› Issue (10): 5533-5542.DOI: 10.16085/j.issn.1000-6613.2023-1520
• 工业催化 • 上一篇
收稿日期:
2023-09-01
修回日期:
2023-11-18
出版日期:
2024-10-15
发布日期:
2024-10-29
通讯作者:
方嘉声
作者简介:
方嘉声(1988—),男,博士,讲师,研究方向为纳米催化材料。E-mail:fangjs@dgut.edu.cn。
基金资助:
FANG Jiasheng(), CHEN Ming, HUANG Zhenting, WEI Kun, CHEN Yulan
Received:
2023-09-01
Revised:
2023-11-18
Online:
2024-10-15
Published:
2024-10-29
Contact:
FANG Jiasheng
摘要:
探索纳米Au高效固载机制有助于提高Au纳米粒子负载能力、稳定性及分布位置锚定效果,从而构建高性能催化反应体系。采用氨基功能化聚合物模板法构建mCeO2介孔壳层封装纳米Au活性位的Au@H-mCeO2核壳中空复合催化剂。mCeO2优异的氧溢出性能及Au与mCeO2增强性协同作用,使得该催化剂在无溶剂条件下选择性催化氧化苯甲醇制得苯甲醛反应中,表现出明显优于mTiO2和mSiO2壳层催化剂的催化性能。最佳反应条件下,Au@H-mCeO2催化剂催化氧化苯甲醇转化率为60%,制得的苯甲醛选择性为88%。氨基功能化聚合物模板导向的原位固载Au纳米颗粒与mCeO2介孔氧化物封装构筑的复合过程,有助于分散和稳定纳米Au催化活性位,有效抑制其在循环反应和热过滤实验中可能出现的聚集和流失,从而保持较好的催化反应活性和稳定性。
中图分类号:
方嘉声, 陈铭, 黄振庭, 卫昆, 陈玉兰. 模板法构建载金核壳中空复合催化剂及催化氧化苯甲醇[J]. 化工进展, 2024, 43(10): 5533-5542.
FANG Jiasheng, CHEN Ming, HUANG Zhenting, WEI Kun, CHEN Yulan. Template-modulated synthesis of supported hollow core-shell Au catalysts for catalytic oxidation of benzyl alcohol[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5533-5542.
序号 | 催化剂 | 苯甲醇转化率/% | 苯甲醛选择性/% | 参考文献 |
---|---|---|---|---|
1 | Au@H-mCeO2 | 60 | 88 | 本文制备 |
2 | Au@H-mTiO2 | 47 | 80 | 本文制备 |
3 | Au@H-mSiO2 | 35 | 82 | 本文制备 |
4 | Au/γ-Al2O3 | 29.6 | 61.9 | [ |
5 | Au/TS-1 | 67 | 84 | [ |
6 | Au/U3O8 | 27 | 86.6 | [ |
7 | SCAumS | 58 | 82 | [ |
8 | mSiO2/Au/Co3O4 | 55 | 84 | [ |
9 | Au/TiO2 | 55 | 73.7 | [ |
表1 不同催化剂催化苯甲醇氧化成苯甲醛的反应性能
序号 | 催化剂 | 苯甲醇转化率/% | 苯甲醛选择性/% | 参考文献 |
---|---|---|---|---|
1 | Au@H-mCeO2 | 60 | 88 | 本文制备 |
2 | Au@H-mTiO2 | 47 | 80 | 本文制备 |
3 | Au@H-mSiO2 | 35 | 82 | 本文制备 |
4 | Au/γ-Al2O3 | 29.6 | 61.9 | [ |
5 | Au/TS-1 | 67 | 84 | [ |
6 | Au/U3O8 | 27 | 86.6 | [ |
7 | SCAumS | 58 | 82 | [ |
8 | mSiO2/Au/Co3O4 | 55 | 84 | [ |
9 | Au/TiO2 | 55 | 73.7 | [ |
1 | Akbar MAHDAVI-SHAKIB, SEMPEL Janine, HOFFMAN Maya, et al. Au/TiO2-catalyzed benzyl alcohol oxidation on morphologically precise anatase nanoparticles[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 11793-11804. |
2 | GUO Shiyu, CAO Dongjie, XIAO Peirong, et al. Activating Pd nanoparticles on oxygen-doped g-C3N4 for visible light-driven thermocatalytic oxidation of benzyl alcohol[J]. Inorganic Chemistry, 2022, 61(39): 15654-15663. |
3 | LI Shuchun, ZHANG Xuefei, HUANG Xiaoyan, et al. Identification of active sites of B/N co-doped nanocarbons in selective oxidation of benzyl alcohol[J]. Journal of Colloid and Interface Science, 2022, 608: 2801-2808. |
4 | WANG Zhe, FENG Jiangjiang, LI Xiaoliang, et al. Au-Pd nanoparticles immobilized on TiO2 nanosheet as an active and durable catalyst for solvent-free selective oxidation of benzyl alcohol[J]. Journal of Colloid and Interface Science, 2021, 588: 787-794. |
5 | SU Ziyi, YANG Chenghan, DENG Qinghua, et al. Synthesis of a novel spherical-shell-structure polymerized ionic liquid microsphere PILM/Au/Al(OH)3 catalyst for benzyl alcohol oxidation[J]. ACS Applied Materials & Interfaces, 2023, 15(13): 16631-16639. |
6 | SONG Zhenlong, LIU Jianguo, HU Yuzhen, et al. Solvent-controlled selective photocatalytic oxidation of benzyl alcohol over Ni@C/TiO2 [J]. Catalysis Communications, 2023, 176: 106628. |
7 | GUALTEROS Jesus A D, GARCIA Marco A S, SILVA Anderson G M DA, et al. Synthesis of highly dispersed gold nanoparticles on Al2O3, SiO2, and TiO2 for the solvent-free oxidation of benzyl alcohol under low metal loadings[J]. Journal of Materials Science, 2019, 54: 238-251. |
8 | BRINDLE Joseph, SUFYAN Sayed ABU, NIGRA Michael M. Support, composition, and ligand effects in partial oxidation of benzyl alcohol using gold-copper clusters[J]. Catalysis Science & Technology, 2022, 12(12): 3846-3855. |
9 | LUO Jingjie, DONG Yanan, YANG Sihan, et al. Au nanoparticles anchored on sulfonated carbon nanotubes for benzyl alcohol oxidation[J]. ACS Applied Nano Materials, 2022, 5(4): 4887-4895. |
10 | MA Yingzhen, NAGY Gergely, Miriam SIEBENBÜRGER, et al. Adsorption and catalytic activity of gold nanoparticles in mesoporous silica: Effect of pore size and dispersion salinity[J]. The Journal of Physical Chemistry C, 2022, 126(5): 2531-2541. |
11 | KARAMI Shima, KABIRI ESFAHANI Farhad, KARIMI Babak. Gold nanoparticles supported on carbon coated magnetic nanoparticles; A robustness and effective catalyst for aerobic alcohols oxidation in water[J]. Molecular Catalysis, 2023, 534: 112772. |
12 | MANIVANNAN Shanmugam, AN Seonghwi, JEONG Juwon, et al. Hematite/M (M=Au, Pd) catalysts derived from a double-hollow Prussian blue microstructure: Simultaneous catalytic reduction of o- and p-nitrophenols[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17557-17570. |
13 | SUBHAN Fazle, ASLAM Sobia, YAN Zifeng, et al. Confinement of Au, Pd and Pt nanoparticle with reduced sizes: Significant improvement of dispersion degree and catalytic activity[J]. Microporous and Mesoporous Materials, 2022, 337: 111927. |
14 | ZHANG Li, SUN Lei, SU Ting, et al. Graphene-based hydrogel with embedded gold nanoparticles as a recyclable catalyst for the degradation of 4-nitrophenol[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640: 128410. |
15 | BUONERBA Antonio, NOSCHESE Annarita, CAPACCHIONE Carmine, et al. Gold nanoparticles supported on poly(2,6-dimethyl-1,4-phenylene oxide) as robust, selective and cost-effective catalyst for aerobic oxidation and direct oxidative esterification of alcohols[J]. ChemCatChem, 2022, 14(14): e202200338. |
16 | YANG Fan, WU Chunzheng, YU Hongbo, et al. The fabrication of hollow ZrO2 nanoreactors encapsulating Au-Fe2O3 dumbbell nanoparticles for CO oxidation[J]. Nanoscale, 2021, 13(14): 6856-6862. |
17 | ZIARATI Abolfazl, BADIEI Alireza, LUQUE Rafael, et al. Visible light CO2 reduction to CH4 using hierarchical yolk@shell TiO2-xH x modified with plasmonic Au-Pd nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3689-3696. |
18 | CAI Ren, JIN Haiyan, YANG Dan, et al. Generalized preparation of Au NP@Ni(OH)2 yolk-shell NPs and their enhanced catalytic activity[J]. Nano Energy, 2020, 71: 104542. |
19 | YU Honghao, WANG Runwei, ZHANG Zongtao, et al. Yolk-shell smart Pickering nanoreactors for base-free one-pot cascade Knoevenagel-hydrogenation with high catalytic efficiency in water[J]. Inorganic Chemistry Frontiers, 2022, 9(7): 1395-1405. |
20 | DAI Shan, NGOC KIEU Phung, GRIMAUD Laurence, et al. Impact of capping agent removal from Au NPs@MOF core-shell nanoparticle heterogeneous catalysts[J]. Journal of Materials Chemistry A, 2022, 10(6): 3201-3205. |
21 | CUI Kaixun, ZHONG Wanfu, LI Lingyun, et al. Well-defined metal Nanoparticles@Covalent organic framework yolk-shell nanocages by ZIF-8 template as catalytic nanoreactors[J]. Small, 2019, 15(3): e1804419. |
22 | LEI Lingli, ZHANG Yuanyuan, JIANG Ying, et al. Oxygen-vacancy-enhanced catalytic activity of Au@Co3O4/CeO2 yolk-shell nanocomposite to electrochemically detect hydrogen peroxide[J]. Electroanalysis, 2021, 33(10): 2180-2186. |
23 | CHEN Guozhu, WANG Yong, WEI Yunwei, et al. Successive interfacial reaction-directed synthesis of CeO2@Au@CeO2-MnO2 environmental catalyst with sandwich hollow structure[J]. ACS Applied Materials & Interfaces, 2018, 10(14): 11595-11603. |
24 | Xushuai LYU, YUAN Shenhao, ZHANG Yiwei, et al. Preparation of cyclonic Co3O4/Au/mesoporous SiO2 catalysts with core-shell structure for solvent-free oxidation of benzyl alcohol[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102: 448-455. |
25 | YUAN Shenhao, Xushuai LYU, ZHANG Yiwei, et al. Fabrication of mesoporous SiO2/Au/Co3O4 hollow spheres catalysts with core-shell structure for liquid phase oxidation of benzyl alcohol to benzaldehyde[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 103: 138-148. |
26 | CUI Zhiqing, ZHOU Hongjian, WANG Guozhong, et al. Enhancement of the visible-light photocatalytic activity of CeO2 by chemisorbed oxygen in the selective oxidation of benzyl alcohol[J]. New Journal of Chemistry, 2019, 43(19): 7355-7362. |
27 | LI Jin, WANG Qinglin, YU Shudi, et al. Highly dispersed Pd nanoclusters on layered double hydroxides with proper calcination improving solvent-free oxidation of benzyl alcohol[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(22): 7223-7233. |
28 | LONG Nguyen Quang, QUAN Ngo Anh. Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by nano Au/γ-Al2O3 under environment-friendly conditions[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114(1): 147-155. |
29 | ZHAN Guowu, HUANG Jiale, DU Mingming, et al. Liquid phase oxidation of benzyl alcohol to benzaldehyde with novel uncalcined bioreduction Au catalysts: High activity and durability[J]. Chemical Engineering Journal, 2012, 187: 232-238. |
30 | CHOUDHARY Vasant R, Rani JHA, JANA Prabhas. Solvent-free selective oxidation of benzyl alcohol by molecular oxygen over uranium oxide supported nano-gold catalyst for the production of chlorine-free benzaldehyde[J]. Green Chemistry, 2007, 9(3): 267-272. |
31 | DIMITRATOS Nikolaos, LOPEZ-SANCHEZ Jose Antonio, MORGAN David, et al. Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a Sol immobilization technique[J]. Catalysis Today, 2007, 122(3/4): 317-324. |
32 | ZHU Jie, WANG Pengcheng, LU Ming. Selective oxidation of benzyl alcohol under solvent-free condition with gold nanoparticles encapsulated in metal-organic framework[J]. Applied Catalysis A: General, 2014, 477:125-131. |
33 | HU Zonggao, ZHOU Guoli, XU Li, et al. Preparation of ternary Pd/CeO2-nitrogen doped graphene composites as recyclable catalysts for solvent-free aerobic oxidation of benzyl alcohol[J]. Applied Surface Science, 2019, 471:852-861. |
34 | CHEN Yuanting, ZHENG Huijian, GUO Zhen, et al. Pd catalysts supported on MnCeO x mixed oxides and their catalytic application in solvent-free aerobic oxidation of benzyl alcohol: Support composition and structure sensitivity[J]. Journal of Catalysis, 2011, 283(1): 34-44. |
35 | ZOU Zhiqiang, MENG Ming, ZHA Yuqing. Surfactant-assisted synthesis, characterizations, and catalytic oxidation mechanisms of the mesoporous MnO x -CeO2 and Pd/MnO x -CeO2 catalysts used for CO and C3H8 oxidation[J]. The Journal of Physical Chemistry C, 2010, 114(1): 468-477. |
36 | CHANG Chunran, YANG Xiaofeng, LONG Bo, et al. A water-promoted mechanism of alcohol oxidation on a Au(111) surface: Understanding the catalytic behavior of bulk gold[J]. ACS Catalysis, 2013, 3(8):1693-1699. |
37 | FERRI Davide, MONDELLI Cecilia, KRUMEICH Frank, et al. Discrimination of active palladium sites in catalytic liquid-phase oxidation of benzyl alcohol[J]. The Journal of Physical Chemistry B, 2006, 110(46): 22982-22986. |
38 | SAVARA Aditya, CHAN-THAW Carine E, ROSSETTI Ilenia, et al. Benzyl alcohol oxidation on carbon-supported Pd nanoparticles: Elucidating the reaction mechanism[J]. ChemCatChem, 2014, 6(12): 3464-3473. |
39 | NOWICKA Ewa, HOFMANN Jan P, PARKER Stewart F, et al. In situ spectroscopic investigation of oxidative dehydrogenation and disproportionation of benzyl alcohol[J]. Physical Chemistry Chemical Physics, 2013, 15(29): 12147-12155. |
[1] | 高玉李, 王红秋, 黄格省, 鲜楠莹, 师晓玉. 全固态锂电池的产业化和技术研究进展[J]. 化工进展, 2024, 43(9): 4767-4778. |
[2] | 刘振涛, 梅金林, 王春雅, 段爱军, 巩雁军, 徐春明, 王喜龙. 一步法加氢制生物航煤催化剂研究进展[J]. 化工进展, 2024, 43(9): 4909-4924. |
[3] | 廖旭, 周骏, 罗杰, 曾瑞琳, 王泽宇, 李尊华, 林金清. 多孔离子聚合物催化二氧化碳环加成反应的研究进展[J]. 化工进展, 2024, 43(9): 4925-4940. |
[4] | 修浩然, 王云刚, 白彦渊, 刘涛, 张兴邦, 张益嘉. H2O2低温催化氧化法脱硫脱硝中试实验特性[J]. 化工进展, 2024, 43(9): 4941-4950. |
[5] | 付维, 宁淑英, 蔡晨, 陈佳音, 周皞, 苏亚欣. Cu改性MIL-100(Fe)催化剂的SCR-C3H6脱硝特性[J]. 化工进展, 2024, 43(9): 4951-4960. |
[6] | 申纯宇, 李翠利, 汤建伟, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 纳米氢氧化镁制备及其阻燃应用进展[J]. 化工进展, 2024, 43(9): 4980-4995. |
[7] | 刘丽, 冯博, 文洋, 古启雄. 硅基介孔材料的合成、功能化及对金属的吸附研究进展[J]. 化工进展, 2024, 43(9): 5063-5078. |
[8] | 阳梦萍, 孙军军, 张晨曦, 薛昊龙, 肖长发. 聚丙烯/聚硅氧烷-二氧化硅中空纤维膜的制备与性能分析[J]. 化工进展, 2024, 43(9): 5106-5112. |
[9] | 欧红香, 闵政, 薛洪来, 曹海珍, 毕海普, 王钧奇. 疏水改性纳米氧化镁对短氟碳链泡沫性能影响[J]. 化工进展, 2024, 43(9): 5177-5184. |
[10] | 赵星程, 贾方旭, 刘晨雨, 韩宝红, 梅宁, 姚宏. 实际规模PN/A工艺载体挂膜性能与微生物群落[J]. 化工进展, 2024, 43(9): 5242-5249. |
[11] | 杨新衡, 纪志永, 郭志远, 刘萁, 张盼盼, 汪婧, 刘杰, 毕京涛, 赵颖颖, 袁俊生. 锂铝层状双金属氢氧化物的制备及其锂脱嵌过程[J]. 化工进展, 2024, 43(9): 5262-5274. |
[12] | 马红周, 党煜博, 王耀宁, 曾劲阳, 赵小军, 史建伟. 废锌基脱硫剂与铜锌基催化剂协同真空碳热提取锌[J]. 化工进展, 2024, 43(9): 5275-5281. |
[13] | 胡婷霞, 赵立欣, 姚宗路, 霍丽丽, 贾吉秀, 谢腾. 双金属催化剂在生物质焦油催化蒸汽重整领域的研究进展[J]. 化工进展, 2024, 43(8): 4354-4365. |
[14] | 王嘉, 李文翠, 吴凡, 高新芊, 陆安慧. NiMo/Al2O3催化剂活性组分分布调控及其加氢脱硫应用[J]. 化工进展, 2024, 43(8): 4393-4402. |
[15] | 龙涛, 周锋, 张伟, 吴泓, 王建, 陈霖. CO-CO2体系制备氘代甲醇催化剂的合成与改性[J]. 化工进展, 2024, 43(8): 4411-4420. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |