化工进展 ›› 2024, Vol. 43 ›› Issue (2): 565-578.DOI: 10.16085/j.issn.1000-6613.2023-1341
• 专栏:多相流测试 • 下一篇
刘浩宇1(), 赵彦琳1(), 姚军1, WANG Chi-Hwa2
收稿日期:
2023-08-07
修回日期:
2023-09-14
出版日期:
2024-02-25
发布日期:
2024-03-07
通讯作者:
赵彦琳
作者简介:
刘浩宇(1998—),女,博士研究生,研究方向为多相流数值计算、颗粒静电。E-mail:3462693752@qq.com。
基金资助:
LIU Haoyu1(), ZHAO Yanlin1(), YAO Jun1, WANG Chi-Hwa2
Received:
2023-08-07
Revised:
2023-09-14
Online:
2024-02-25
Published:
2024-03-07
Contact:
ZHAO Yanlin
摘要:
在过去的几十年里,由于许多工业问题和相关新技术的发展,颗粒和颗粒流的静电学得到了越来越多的关注。颗粒-颗粒和颗粒-壁面之间发生碰撞从而产生静电。静电的发生会受多种因素的影响,随着颗粒与壁面之间的接触会在它们的表面产生静电荷的积累,静电量可以达到饱和状态。本文分别综述了气力输送颗粒系统中的静电发生及静电平衡,着重分析了颗粒与壁面之间接触带电的两种方式(碰撞带电和摩擦带电)、颗粒流模式及受力情况,讨论了颗粒带电过程所受的影响因素,包括外界条件(温度、相对湿度)、颗粒几何条件(尺寸、形状、接触面积、粗糙度)以及受力条件(摩擦力、常压)等。此外,对气力输送颗粒系统中静电的数值计算作了简单介绍。最后,为澄清气力输送颗粒系统中静电发生的机理,对单颗粒发生静电的物理机制进行了分析。根据对相关研究结果的总结,发现由于碰撞或摩擦造成的电荷转移的工作机制尚未完全明了,这些问题将在未来逐步得到解决。
中图分类号:
刘浩宇, 赵彦琳, 姚军, WANG Chi-Hwa. 气力输送颗粒系统中静电的研究进展[J]. 化工进展, 2024, 43(2): 565-578.
LIU Haoyu, ZHAO Yanlin, YAO Jun, WANG Chi-Hwa. Research advances of electrostatics in pneumatic conveying granules systems[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 565-578.
1 | COLE B N, BAUM M R, MOBBS F R. An investigation of electrostatic charging effects in high-speed gas-solids pipe flows[J]. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, 1969, 184(3): 77-83. |
2 | YAO Jun, ZHANG Yan, WANG Chi-Hwa, et al. Electrostatics of the granular flow in a pneumatic conveying system[J]. Industrial & Engineering Chemistry Research, 2004, 43(22): 7181-7199. |
3 | WU Jiejie, YAO Jun, ZHAO Yanlin. The effects of granular velocity and shape factors on the generation of polymer-metal electrostatic charge[J]. Journal of Electrostatics, 2016, 82: 22-28. |
4 | ZISMAN W A. A new method of measuring contact potential differences in metals[J]. Review of Scientific Instruments, 1932, 3(7): 367-370. |
5 | Ernő NÉMETH, ALBRECHT Victoria, SCHUBERT Gert, et al. Polymer tribo-electric charging: Dependence on thermodynamic surface properties and relative humidity[J]. Journal of Electrostatics, 2003, 58(1/2): 3-16. |
6 | YAO Jun, WU Jiejie, ZHAO Yanlin, et al. Experimental investigations of granular shape effects on the generation of electrostatic charge[J]. Particuology, 2014, 15: 82-89. |
7 | YAO Jun, GE Shaoheng, ZHAO Yanlin, et al. Investigation of granule electrostatic charge generation with normal stress effect[J]. Advanced Powder Technology, 2016, 27(5): 2094-2101. |
8 | BAILEY A G. Charging of solids and powders[J]. Journal of Electrostatics, 1993, 30: 167-180. |
9 | ZHAO Yanlin, LIU Min, WANG Chi-Hwa, et al. Electrostatics of granules and granular flows: A review[J]. Advanced Powder Technology, 2023, 34(1): 103895. |
10 | MATSUSYAMA Tatsushi, YAMAMOTO Hideo. Impact charging of particulate materials[J]. Chemical Engineering Science, 2006, 61(7): 2230-2238. |
11 | ZHAO Yanlin, ZHOU Fang, YAO Jun, et al. Electrostatic charging of single granules by repeated sliding along inclined metal plates[J]. Journal of Electrostatics, 2017, 87: 140-149. |
12 | YAO Jun, ZHANG Yan, WANG Chi-Hwa, et al. On the electrostatic equilibrium of granular flow in pneumatic conveying systems[J]. AIChE Journal, 2006, 52(11): 3775-3793. |
13 | YAO Jun, WANG Chi-Hwa. Granular size and shape effect on electrostatics in pneumatic conveying systems[J]. Chemical Engineering Science, 2006, 61(12): 3858-3874. |
14 | YAO Jun, LI Jinzhui, ZHAO Yanlin, et al. Characterization of granular electrostatics generation[J]. Powder Technology, 2020, 363: 74-85. |
15 | RUAN Xuan, CHEN Sheng, LI Shuiqing. Effect of long-range Coulomb repulsion on adhesive particle agglomeration in homogeneous isotropic turbulence[J]. Journal of Fluid Mechanics, 2021, 915: A131. |
16 | HAN Chun, ZHOU Qun, HU Jiawei, et al. The charging characteristics of particle-particle contact[J]. Journal of Electrostatics, 2021, 112: 103582. |
17 | MATSUSAKA Shuji, NISHIDA Tomonori, GOTOH Yoshiaki, et al. Electrification of fine particles by impact on a polymer film target[J]. Advanced Powder Technology, 2003, 14(1): 127-138. |
18 | XU Chuanxi, ZHANG Weiwei, HU Shui, et al. Measuring the electrostatic charges of a single particle in contact electrification[J]. Powder Technology, 2021, 393: 619-629. |
19 | YAO Jun, ZHOU Fang, ZHAO Yanlin. Charge generation and electrostatic equilibrium for single granules during sliding[J]. Particuology, 2016, 29: 126-134. |
20 | HU Jiawei, GU Pengfei, ZHOU Qun, et al. Experimental and modeling study on mechanisms of sliding and rolling electrification[J]. Powder Technology, 2018, 340: 484-494. |
21 | WATANABE H, GHADIRI M, MATSUYAMA T, et al. Triboelectrification of pharmaceutical powders by particle impact[J]. International Journal of Pharmaceutics, 2007, 334(1/2): 149-155. |
22 | DWARI R, RAO K. An exploration on tribo-charging and electron transfer of ash forming minerals in coal by contact angle goniometry[J]. Konference I Mineralteknik, Lule, 2007: 41-54. |
23 | SALEH Khashayar, TRAORE NDAMA Adoum, GUIGON Pierre. Relevant parameters involved in tribocharging of powders during dilute phase pneumatic transport[J]. Chemical Engineering Research and Design, 2011, 89(12): 2582-2597. |
24 | SMELTZER E E, WEAVER M L, KLINZING G E. Individual electrostatic particle interaction in pneumatic transport[J]. Powder Technology, 1982, 33(1): 31-42. |
25 | GAJEWSKI A. Measuring the charging tendency of polysterene particles in pneumatic conveyance[J]. Journal of Electrostatics, 1989, 23: 55-66. |
26 | ZHANG Peng, LIANG C, ZHOU Qun, et al. Experimental investigation of particle adhesion on the wall due to electrostatic charge in gas-solid fluidized beds[J]. Powder Technology, 2021, 387: 373-384. |
27 | TSUJI Yutaka, MORIKAWA Yoshinobu. Flow pattern and pressure fluctuation in air-solid two-phase flow in a pipe at low air velocities[J]. International Journal of Multiphase Flow, 1982, 8(4): 329-341. |
28 | SOMMERFELD M. Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: Part I. Particle transport[J]. International Journal of Multiphase Flow, 2003, 29(4): 675-699. |
29 | ZHAO Yanlin, TANG Chunyan, YAO Jun, et al. Investigation of erosion behavior of 304 stainless steel under solid-liquid jet flow impinging at 30°[J]. Petroleum Science, 2020, 17(4): 1135-1150. |
30 | LIU Min, YAO Jun, ZHAO Yanlin. The dispersion of particles in turbulent semi-circular duct flows[J]. Petroleum Science, 2021, 18(4): 1240-1255. |
31 | FAN J R, YAO J, CEN K F. Antierosion in a 90° bend by particle impaction[J]. AIChE Journal, 2002, 48(7): 1401-1412. |
32 | YU C P. Precipitation of unipolarly charged particles in cylindrical and spherical vessels[J]. Journal of Aerosol Science, 1977, 8(4): 237-241. |
33 | MATSUSAKA S, MARUYAMA H, MATSUYAMA T, et al. Triboelectric charging of powders: A review[J]. Chemical Engineering Science, 2010, 65(22): 5781-5807. |
34 | NOMURA Toshiyuki, SATOH Takeshi, MASUDA Hiroaki. The environment humidity effect on the tribo-charge of powder[J]. Powder Technology, 2003, 135/136: 43-49. |
35 | YAO Jun, WANG Chi-Hwa, CHUAN LIM Eldin WEE, et al. Granular attrition in a rotary valve: Attrition product size and shape[J]. Chemical Engineering Science, 2006, 61(11): 3435-3451. |
36 | BROWN R C. Tutorial review: Simultaneous measurement of particle size and particle charge[J]. Journal of Aerosol Science, 1997, 28(8): 1373-1391. |
37 | UNGER L, BOULAUD D, BORRA J P. Unipolar field charging of particles by electrical discharge: Effect of particle shape[J]. Journal of Aerosol Science, 2004, 35(8): 965-979. |
38 | GUARDIOLA Jesús, ROJO Victor, RAMOS Guadalupe. Influence of particle size, fluidization velocity and relative humidity on fluidized bed electrostatics[J]. Journal of Electrostatics, 1996, 37(1/2): 1-20. |
39 | WATANO Satoru, SAITO Seiji, SUZUKI Teruo. Numerical simulation of electrostatic charge in powder pneumatic conveying process[J]. Powder Technology, 2003, 135/136: 112-117. |
40 | NIFUKU Masaharu, KATOH Hiromi. A study on the static electrification of powders during pneumatic transportation and the ignition of dust cloud[J]. Powder Technology, 2003, 135/136: 234-242. |
41 | HOWELL D W, ARONSON Igor S, CRABTREE G W. Dynamics of electrostatically driven granular media: Effects of humidity[J]. Physical Review E, 2001, 63(5): 050301. |
42 | NIEH S, NGUYEN T. Effects of humidity, conveying velocity, and particle size on electrostatic charges of glass beads in a gaseous suspension flow[J]. Journal of Electrostatics, 1988, 21(1): 99-114. |
43 | XU Wenchao, GROSSHANS Holger. Experimental study of humidity influence on triboelectric charging of particle-laden duct flows[J]. Journal of Loss Prevention in the Process Industries, 2023, 81: 104970. |
44 | MOUGHRABIAH Wajeeh O, GRACE John R, BI Xiaotao T. Effects of pressure, temperature, and gas velocity on electrostatics in gas-solid fluidized beds[J]. Industrial & Engineering Chemistry Research, 2009, 48(1): 320-325. |
45 | 李俊菲, 梁财, 胡驾纬, 等. 料罐中粉体静电特性[J]. 化工进展, 2017, 36(10): 3633-3638. |
LI Junfei, LIANG Cai, HU Jiawei, et al. Electrostatic characteristics of powders in hopper[J]. Chemical Industry and Engineering Progress, 2017, 36(10): 3633-3638. | |
46 | 姚军, 黄勇, 吴洁洁, 等. 颗粒速度和形体因素影响静电发生机理[J]. 中南大学学报(自然科学版), 2016, 47(5): 1799-1804. |
YAO Jun, HUANG Yong, WU Jiejie, et al. Investigation of granule sliding velocity and granule shape effect on electrostatics[J]. Journal of Central South University (Science and Technology), 2016, 47(5): 1799-1804. | |
47 | RUAN Xuan, GORMAN Matthew T, LI Shuiqing, et al. Surface-resolved dynamic simulation of charged non-spherical particles[J]. Journal of Computational Physics, 2022, 466: 111381. |
48 | ZHANG Yufeng, YANG Yi, ARASTOOPOUR Hamid. Electrostatic effect on the flow behavior of a dilute gas/cohesive particle flow system[J]. AIChE Journal, 1996, 42(6): 1590-1599. |
49 | ZHU Kewu, MADHUSUDANA RAO S, HE HUANG Qiau, et al. On the electrostatics of pneumatic conveying of granular materials using electrical capacitance tomography[J]. Chemical Engineering Science, 2004, 59(15): 3201-3213. |
50 | 孙德帅, 郭庆杰. 流化床内静电的产生与控制[J]. 化工进展, 2008, 27(9): 1353-1356. |
SUN Deshuai, GUO Qingjie. Electrostatic charge generation and control in fluidized beds[J]. Chemical Industry and Engineering Progress, 2008, 27(9): 1353-1356. | |
51 | NWOSE Emmanuel Nkem, PEI Chunlei, WU Chuanyu. Modelling die filling with charged particles using DEM/CFD[J]. Particuology, 2012, 10(2): 229-235. |
52 | 阮璇, 李水清. 静电力对微米颗粒团稳定性影响的数值模拟[J]. 工程热物理学报, 2022, 43(11): 3005-3010. |
RUAN Xuan, LI Shuiqing. Numerical simulation on the effects of electrostatic force on the stability of agglomerates formed by microparticles[J]. Journal of Engineering Thermophysics, 2022, 43(11): 3005-3010. | |
53 | Eldin Wee Chuan LIM, YAO Jun, ZHAO Yanlin. Pneumatic transport of granular materials with electrostatic effects[J]. AIChE Journal, 2012, 58(4): 1040-1059. |
54 | BOUTSIKAKIS Athanasios, FEDE Pascal, SIMONIN Olivier. Quasi-periodic boundary conditions for hierarchical algorithms used for the calculation of inter-particle electrostatic interactions[J]. Journal of Computational Physics, 2023, 472: 111686. |
55 | GU Junping, WANG Qinggong, WU Yuxin, et al. Numerical study of particle transport by an alternating travelling-wave electrostatic field[J]. Acta Astronautica, 2021, 188: 505-517. |
56 | 于涵, 王宏, 朱恂, 等. 静电喷雾沉积半径的预测模型[J]. 化工进展, 2022, 41(6): 2864-2870. |
YU Han, WANG Hong, ZHU Xun, et al. Prediction model of electrospray deposition radius[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2864-2870. | |
57 | OHSHIMA Hiroyuki. Electrostatic interaction between two spheroidal particles at large separations[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629: 127482. |
58 | 田雪皓, 刘柏文, 王磊, 等. 含固氧颗粒的液氢传输管路中静电积聚仿真研究[J]. 西安交通大学学报. . |
TIAN Xuehao, LIU Bowen, WANG Lei, et al. Simulation of electrostatic accumulation in liquid hydrogen transmission pipeline containing solid oxygen particles[J]. Journal of Xi’an Jiaotong University. . | |
59 | OZLER Gizem, DEMIRCIOGLU Mustafa, GROSSHANS Holger. Effect of drag force modeling on the flow of electrostatically charged particles[J]. Advanced Powder Technology, 2023, 34(2): 103951. |
60 | RUAN Xuan, LI Shuiqing. Effect of electrostatic interaction on impact breakage of agglomerates formed by charged dielectric particles[J]. Physical Review E, 2022, 106(3): 034905. |
61 | MATSUSAKA Shuji, GHADIRI Mojtaba, MASUDA Hiroaki. Electrification of an elastic sphere by repeated impacts on a metal plate[J]. Journal of Physics D: Applied Physics, 2000, 33(18): 2311-2319. |
62 | MATSUSAKA Shuji, Mitsuhiro OKI, MASUDA Hiroaki. Control of electrostatic charge on particles by impact charging[J]. Advanced Powder Technology, 2007, 18(2): 229-244. |
63 | FATH Wolfgang, BLUM Carsten, GLOR Martin, et al. Electrostatic ignition hazards due to pneumatic transport of flammable powders through insulating or dissipative tubes and hoses–New experiments and calculations[J]. Journal of Electrostatics, 2013, 71(3): 377-382. |
64 | WATANO Satoru. Mechanism and control of electrification in pneumatic conveying of powders[J]. Chemical Engineering Science, 2006, 61(7): 2271-2278. |
65 | YAN Yudong, ZHAO Yanlin, YAO Jun, et al. Investigation of particle transport by a turbulent flow through a 90° bend pipe with electrostatic effects[J]. Powder Technology, 2021, 394: 547-561. |
66 | YAN Yudong, ZHAO Yanlin, LIU Min, et al. Reynolds number dependence of particle transport in a 90° bend with electrostatic effects[J]. Particuology, 2023, 77: 91-104. |
67 | ZHAO Yanlin, YAN Yudong, ZHOU Xueyao, et al. Numerical investigation of electrostatic effect on particle behavior in a 90 degrees bend[J]. Advanced Powder Technology, 2021, 32(3): 810-824. |
68 | 颜昱东, 赵彦琳, 刘敏, 等. 气固两相90°弯管流中静电影响颗粒运动的大涡模拟研究[J]. 工程热物理学报, 2023, 44(7): 1859-1865. |
YAN Yudong, ZHAO Yanlin, LIU Min, et al. Large eddy simulation of electrostatic effect on particle movement in gas-solid two-phase 90° bend flow[J]. Journal of Engineering Thermophysics, 2023, 44(7): 1859-1865. | |
69 | GROSSHANS Holger, PAPALEXANDRIS Miltiadis V. Large Eddy simulation of triboelectric charging in pneumatic powder transport[J]. Powder Technology, 2016, 301: 1008-1015. |
70 | Grosshans Holger, PAPALEXANDRIS Miltiadis V. Evaluation of the parameters influencing electrostatic charging of powder in a pipe flow[J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 83-91. |
71 | Grosshans Holger, PAPALEXANDRIS Miltiadis V. Numerical study of the influence of the powder and pipe properties on electrical charging during pneumatic conveying[J]. Powder Technology, 2017, 315: 227-235. |
72 | GROSSHANS H, VILLAFAÑE L, BANKO A, et al. Case study on the influence of electrostatic charges on particle concentration in turbulent duct flows[J]. Powder Technology, 2019, 357: 46-53. |
73 | ARIF S, BRANKEN D J, EVERSON R C, et al. CFD modeling of particle charging and collection in electrostatic precipitators[J]. Journal of Electrostatics, 2016, 84: 10-22. |
74 | GROSSHANS Holger, PAPALEXANDRIS Miltiadis V. Direct numerical simulation of triboelectric charging in particle-laden turbulent channel flows[J]. Journal of Fluid Mechanics, 2017, 818: 465-491. |
75 | NINTO Y, GARCIA M H. Experiments on particle—Turbulence interactions in the near-wall region of an open channel flow: Implications for sediment transport[J]. Journal of Fluid Mechanics, 1996, 326: 285-319. |
76 | PAN Y, BANERJEE S. Numerical simulation of particle interactions with wall turbulence[J]. Physics of Fluids, 1996, 8(10): 2733-2755. |
77 | PAN Y, BANERJEE S. Numerical investigation of the effects of large particles on wall-turbulence[J]. Physics of Fluids, 1997, 9(12): 3786-3807. |
78 | MARCHIOLI Cristian, GIUSTI Andrea, VITTORIA SALVETTI Maria, et al. Direct numerical simulation of particle wall transfer and deposition in upward turbulent pipe flow[J]. International Journal of Multiphase Flow, 2003, 29(6): 1017-1038. |
79 | YAO Jun, LI Jinzhui, ZHAO Yanlin. Investigation of granular dispersion in turbulent pipe flows with electrostatic effect[J]. Advanced Powder Technology, 2020, 31(4): 1543-1555. |
80 | LI Jinzhui, YAO Jun, ZHAO Yanlin, et al. Large eddy simulation of electrostatic effect on particle transport in particle-laden turbulent pipe flows[J]. Journal of Electrostatics, 2021, 109: 103542. |
81 | 唐晓峰, 冯欢欢, 潘明, 等. 静电力对槽道湍流中热颗粒分布和相间能量输运的影响[J]. 力学学报, 2023, 55(6): 1217-1227. |
TANG Xiaofeng, FENG Huanhuan, PAN Ming, et al. Effect of electrostatic force on spatial distribution and interphase energy transport in radiant heated particle-laden turbulent channel flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1217-1227. | |
82 | GROSSHANS Holger. Modulation of particle dynamics in dilute duct flows by electrostatic charges[J]. Physics of Fluids, 2018, 30(8): 083303. |
83 | YAO Jun, CONG Shuo, ZHAO Yanlin, et al. Investigation of granular surface roughness effect on electrostatic charge generation[J]. Advanced Powder Technology, 2017, 28(9): 2003-2014. |
84 | 房佳, 赵彦琳, 姚军, 等. 煤粉颗粒静电生成的实验研究[J]. 中国科学院大学学报, 2020, 37(2): 220-227. |
FANG Jia, ZHAO Yanlin, YAO Jun, et al. Experimental investigation of electrostatic generation of coal granules[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(2): 220-227. | |
85 | YAO Jun, CONG Shuo, ZHAO Yanlin, et al. Investigation of granular surface roughness effect on electrostatic charge generation[J]. Advanced Powder Technology, 2017, 28: 2003-2014. |
86 | Akihiko EMA, YASUDA Daisuke, TANOUE Ken-ichiro, et al. Tribo-charge and rebound characteristics of particles impact on inclined or rotating metal target[J]. Powder Technology, 2003, 135/136: 2-13. |
87 | HOGUE M D, CALLE C I, CURRY D R, et al. Discrete element modeling (DEM) of triboelectrically charged particles: Revised experiments[J]. Journal of Electrostatics, 2009, 67(4): 691-694. |
88 | HOGUE Michael D, CALLE Carlos I, WEITZMAN Peter S, et al. Calculating the trajectories of triboelectrically charged particles using Discrete Element Modeling (DEM)[J]. Journal of Electrostatics, 2008, 66(1/2): 32-38. |
89 | MARRA Wiclef D, RODRIGUES Marcos V, MIRANDA Rosilene G A, et al. The effect of the generation and handling in the acquired electrostatic charge in airborne particles[J]. Powder Technology, 2009, 191(3): 299-308. |
90 | YU Deying, CASTLE G S P, ADAMIAK K. The effect of shape and roughness on the maximum induction charge for small particles[J]. Journal of Physics: Conference Series, 2008, 142: 012079. |
91 | YAO Jun, LIU Haoyu, ZHAO Yanlin, et al. Particle movement mode effect on electrostatics[J]. Advanced Powder Technology, 2023, 34(12): 104246. |
92 | GREASON William D. Investigation of a test methodology for triboelectrification[J]. Journal of Electrostatics, 2000, 49(3/4): 245-256. |
93 | HOMEWOOD K P, ROSE-INNES A C. An investigation of contact-charge accumulation on insulators repeatedly touched by metals[J]. Journal of Physics D: Applied Physics, 1982, 15(11): 2283-2296. |
94 | HORN R G, SMITH D T. Contact electrification and adhesion between dissimilar materials[J]. Science, 1992, 256(5055): 362-364. |
95 | 孟鹤, 李亮亮, 宫宏, 等. 聚乙烯醇物料静电特性及其危害研究[J]. 消防科学与技术, 2022, 41(4): 452-455. |
MENG He, LI Liangliang, GONG Hong, et al. Research on the electrostatic properties and hazards of polyvinyl alcohol[J]. Fire Science and Technology, 2022, 41(4): 452-455. |
[1] | 剧芳. 基于银-硫配位的协同抗菌水凝胶的制备与性能[J]. 化工进展, 2024, 43(2): 1039-1046. |
[2] | 杨杰源, 朱易春, 赖雅芬, 张超, 田帅, 谢颖. 低强度超声波对高负荷厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2024, 43(2): 1098-1108. |
[3] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[4] | 刘宇龙, 姚俊虎, 舒闯闯, 佘跃惠. 磁性Fe3O4纳米颗粒的生物合成及其在提高采收率中的应用[J]. 化工进展, 2023, 42(5): 2464-2474. |
[5] | 齐承鲁, 张忠良, 王明超, 李耀鹏, 宫晓辉, 孙鹏, 郑斌. 内置管束布置对换热器内固体颗粒流动的影响[J]. 化工进展, 2023, 42(5): 2306-2314. |
[6] | 卢兴福, 戴波, 杨世亮. 转鼓内圆柱形颗粒混合的超二次曲面离散单元法模拟[J]. 化工进展, 2023, 42(5): 2252-2261. |
[7] | 司银芳, 胡语婕, 张凡, 董浩, 佘跃惠. 生物合成氧化锌纳米颗粒材料及其抗菌应用[J]. 化工进展, 2023, 42(4): 2013-2023. |
[8] | 杨泛明, 贺国文. 颗粒状NiO的制备及其电化学性能和CO2吸附性能[J]. 化工进展, 2023, 42(2): 907-916. |
[9] | 侯婉, 陈汇龙, 程谦, 陈英健, 卫泽鹏, 赵斌娟. 高温密封润滑膜汽液固流动特性数值计算分析[J]. 化工进展, 2023, 42(2): 699-710. |
[10] | 邵宏勋, 谢俊, 桂玉双, 李润东. 基于微米级颗粒临界沉积/剥离标准的研究进展[J]. 化工进展, 2023, 42(12): 6141-6156. |
[11] | 邱沫凡, 蒋琳, 刘荣正, 刘兵, 唐亚平, 刘马林. 气固流化床化学反应数值模拟中颗粒尺度模型研究进展[J]. 化工进展, 2023, 42(10): 5047-5058. |
[12] | 颜子涵, 陈群云, 李卓, 付融冰, 李彦伟, 吴志根. 改进型土壤破碎混拌结构的性能数值分析与优化[J]. 化工进展, 2022, 41(S1): 72-80. |
[13] | 温芳, 张勃. 长余辉发光材料在应急疏散标识中的应用形态[J]. 化工进展, 2022, 41(S1): 282-292. |
[14] | 彭德其, 冯源, 王依然, 谭卓伟, 俞天兰, 吴淑英. 立式缩放管内液固颗粒群浓度分布与汇聚特性[J]. 化工进展, 2022, 41(9): 4662-4672. |
[15] | 付双成, 曹港, 陈强飞, 孙肖润, 偶国富, 周发戚, 李芦雨. 低温省煤器飞灰沉积阻塞机理分析及结构优化[J]. 化工进展, 2022, 41(8): 4035-4046. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |