化工进展 ›› 2024, Vol. 43 ›› Issue (7): 4059-4071.DOI: 10.16085/j.issn.1000-6613.2023-1007
• 资源与环境化工 • 上一篇
刘君1,2(), 胥志祥2(), 朱春游1, 岳中秋1, 潘学军2
收稿日期:
2023-06-19
修回日期:
2023-09-05
出版日期:
2024-07-10
发布日期:
2024-08-14
通讯作者:
胥志祥
作者简介:
刘君(1989—),女,硕士,研发工程师,研究方向为新污染物的环境行为与污染控制。E-mail:junliu0922@163.com。
基金资助:
LIU Jun1,2(), XU Zhixiang2(), ZHU Chunyou1, YUE Zhongqiu1, PAN Xuejun2
Received:
2023-06-19
Revised:
2023-09-05
Online:
2024-07-10
Published:
2024-08-14
Contact:
XU Zhixiang
摘要:
微塑料作为一类新污染物,其广泛存在于水体、土壤和大气等环境介质中,并对生态安全和人体健康造成潜在威胁。本文归纳总结了环境介质中典型微塑料(PE、PP、PS、PVC、PET)的污染特征,系统阐述了微塑料的微生物降解途径,深入剖析了微生物介导微塑料降解的分子机理和影响因素。环境介质中微塑料可通过细菌、真菌和放线菌等微生物进行降解(包括微生物定殖、生物膜截留和生物酶降解等过程),其降解效率与微生物模型和微塑料特性密切相关,并受到典型环境因子(如光照、温度、pH等)的影响。本论文系统总结了微生物介导降解微塑料的研究进展,以期为基于微生物技术控制微塑料提供理论指导和技术支撑。
中图分类号:
刘君, 胥志祥, 朱春游, 岳中秋, 潘学军. 典型环境微塑料的微生物降解途径及分子机制[J]. 化工进展, 2024, 43(7): 4059-4071.
LIU Jun, XU Zhixiang, ZHU Chunyou, YUE Zhongqiu, PAN Xuejun. Microbial degradation of typical microplastics in environment: Degradation pathways and molecular mechanisms[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4059-4071.
样品来源 | 环境 介质 | 类型 | 形态分布 | 尺寸/mm | 颜色 | 丰度 | 分析方法 | 参考文献 |
---|---|---|---|---|---|---|---|---|
北极淡水湖 | 沉积物 | PET、PES | 纤维>碎片>薄膜>涂片>细丝 | <0.3、0.3~0.5、0.5~1、1~2、2~5、>5 | 蓝色、红色 | ②1680±440items/m2 | MR、 ATR-FTIR | [ |
南极特别 保护区 | 溪流 | PA、PES、 PTFE | 纤维>薄膜 | 长度(400~3546)×10-3、 宽度(10~1026)×10-3 | 透明、红色、黑色 | ①(0.47~1.43)×10-6 | MR、 ATR-FTIR | [ |
喜马拉雅山 (印度西北部) | 表层水、 沉积物 | PA(96%)、 PET(1.4%)、 PS(1.4%)、 PVC(0.9%)、 PP(0.7%) | 纤维>碎片>薄膜>微球 | 0.1~1、1~2、2、>5 | 绿色、红色、蓝色、白色、黄色、黑色 | ②600±360 | MR、 ATR-FTIR | [ |
青藏高原 (中国) | 湖滨沉积物 | PE、PP、PET、PVC、PS | 薄片、纤维、碎片、泡沫 | <0.5、0.5~1、1~5 | — | ②8±14~563±1219items/m2 | RS、SEM | [ |
三峡水库 (中国) | 表层水、 沉积物 | PS(38.5%)、 PP(29.4%)、 PE(21.0%) | 纤维>薄膜>碎片>微球 | <1 | 白色、蓝色、红色 | ①(1597~12611)×10-3,②25~300 | MR、RS | [ |
中国长江 中下游 (湖泊、河流、河口) | 地表水、 沉积物、 蛤蚌 | PES(33%)、 PP(19%)、 PE(9%) | 纤维>碎片>薄膜>微球 | 0.021~4.83 (0.25~1) | 白色、黑色、蓝色、绿色、黄色、红色 | ①0.5~3.1,②15~160,③0.3~4.9 | MR、 ATR-FTIR | [ |
中国珠江 (河口、城市 水体) | 地表水 | PAM(26.2%)、 Cellophane(23.1%)、 PP(13.1%)、 PE(10.0%) | 薄膜>碎片>纤维 | <0.5(80%)、0.5~5 | 蓝色、白色、绿色、红色 | ①(7850~10950)×10-3, ①(8725~53250)×10-3 | RS、SEM | [ |
西贡河 (越南) | 地表水 | PE(79%)、 PE/PP(15%)、 PP(2%)、 PET(4%) | 纤维>碎片 | 0.05~0.2 | 蓝色 | ①(172000~519000)×10-3, ①(10~223)×10-3 | MR、 ATR-FTIR | [ |
易北河 (德国) | 表层水 沉积物 | 表层水: PE(47.5%)、 PP(45.0%) 沉积物: PE(34.4%)、 PP(12.5%)、 PS(18.5%) | 表层水:纤维>碎片>微球>薄片 沉积物:微球>碎片>纤维>薄片 | 0.125~5 | — | ①(5.57±4.33)×10-3,②(3.35±6.60)×106items/m3 | MR、 ATR-FTIR、 pyr-GC-MS | [ |
莱茵河 (瑞士) | 河流 | PS(29.7%)、 PP(16.9%)、 PA(9.3%)、 PE(5.1%)、 PVC(1.7%) | 不透明微球(45.2%)、碎片(37.5%)、透明微球(13.2%)、纤维(2.5%) | 0.3~5 | — | ①892,777items/km2 | RS、SEM | [ |
阿托亚克河(墨西哥) | 河流沉积物 | — | 薄膜(25.9%)、 碎片(22.2%)、 纤维(14.8%) | — | 彩色(51%)、白色(49%) | ②4500±702.23 | SEM、EDX | [ |
太湖 (中国) | 表层水、沉积物、蛤蚌 | PET、PEST、PP | 纤维(48%~84%) | 0.1~1 | 蓝色(50%~63%)、白色/透明(29%~44%) | ①3.40~25.8 ②11.0~234.6 ③0.2~12.5 | MR、 FTIR、SEM、EDX | [ |
鄱阳湖 (中国) | 表层水、沉积物、鲫鱼 | PP(37%)、 PE(30%)、 PA(15%)、 PVC(8%) | 纤维>薄膜>碎片>微球 | <0.1、0.1~0.5、0.5~1、1~5、>5 表层水:<0.5(73.1%)、沉积物: <0.5(57.1%) | 透明>彩色>黑色>白色 | ①5~34②54~506 ③0~18 | MR、RS | [ |
洞庭湖 (中国) | 表层水、 沉积物 | PE(28.2%)、 PP(17.9%)、PET(12.8%)、PVC(10.3%)、PS(7.7%)、 PA(7.7%)、 PL(5.1%) | 纤维(50%~91%)、微球(5.67%~33.33%)、碎片(2.63%~20.00%) | 表层水:0.333~0.9 沉积物:<0.1 | 透明>绿色>红色>蓝色>白色 | ①0.62~4.31 ②210~520 ③0~18 | MR、FTIR | [ |
青海湖 (中国) | 湖泊沉积物 | PA、PE、PP、PET、PS、PVC | 纤维>碎片>微球>薄膜 | 0.05~0.1、0.1~0.2、0.2~0.3、0.3~0.5、0.5~1、1~2、2~5 | 透明、蓝色、红色、黑色、绿色、黄色、白色 | ②393±457 | MR、ATR-FTIR | [ |
维多利亚湖 (乌干达) | 湖泊表层水 | PE(60.5%)、PP、PS、PES | 碎片(36.7%)、 薄膜(25.0%)、 薄片(23.0%)、 细丝(15.0%)、 泡(0.3%) | 0.3~0.9、1.0~1.9、2.0~2.9、3.0~3.9、4.0~4.9 | 透明、蓝色、绿色、黑色、黄色、紫色、红色 | ①0.02±2.19 | MR、ATR-FTIR | [ |
渤海 (中国) | 海水(春>夏/冬>秋) | PE(43%)、PP(34%)、PS(19%)、PET(13%) | 细线(38%)、 碎片(5%)、 泡沫(13%)、 纤维(12%) | <0.33 | 白色、绿色 | ①(0.35±0.13)×10-3 | MR、FTIR | [ |
莱州湾 (中国) | 海水、 沉积物 | PET | 碎片>纤维 | 海水: (336.2~4997.7)×10-3 沉积物: (28.3~4933.0)×10-3 | 蓝色、白色 | a0.1±6.7,②193±1053 | MR、FTIR | [ |
中国(17省) | 农业土壤 | — | 薄膜 | 20~40土层 | — | ②80.3±49.3, ②308±138.1,②1075.6±346.8 | — | [ |
珠江三角洲(PRE)、 中国南海(SCS)、 东印度洋(EIO) | 大气 | PET(50.00%)、PP(22.22%) | 纤维(88.89%)、碎片(11.11%) | (851.09±578.30)×10-3 | 黑色、白色、红色、黄色、棕色、蓝色 | ④(4.2±2.5)×10-2, ④(0.8±1.3)×10-2, ④(0.4±0.6)×10-2 | MR | [ |
汉堡市 (德国) | 大气降尘 | PE(48.8%) | 碎片(95%)、 纤维(5%) | <0.063、0.063~0.3、 >0.3 | ④136.5~512.0items/(m2·d) | FM、RS | [ |
表1 不同环境介质中微塑料的赋存特征与污染水平
样品来源 | 环境 介质 | 类型 | 形态分布 | 尺寸/mm | 颜色 | 丰度 | 分析方法 | 参考文献 |
---|---|---|---|---|---|---|---|---|
北极淡水湖 | 沉积物 | PET、PES | 纤维>碎片>薄膜>涂片>细丝 | <0.3、0.3~0.5、0.5~1、1~2、2~5、>5 | 蓝色、红色 | ②1680±440items/m2 | MR、 ATR-FTIR | [ |
南极特别 保护区 | 溪流 | PA、PES、 PTFE | 纤维>薄膜 | 长度(400~3546)×10-3、 宽度(10~1026)×10-3 | 透明、红色、黑色 | ①(0.47~1.43)×10-6 | MR、 ATR-FTIR | [ |
喜马拉雅山 (印度西北部) | 表层水、 沉积物 | PA(96%)、 PET(1.4%)、 PS(1.4%)、 PVC(0.9%)、 PP(0.7%) | 纤维>碎片>薄膜>微球 | 0.1~1、1~2、2、>5 | 绿色、红色、蓝色、白色、黄色、黑色 | ②600±360 | MR、 ATR-FTIR | [ |
青藏高原 (中国) | 湖滨沉积物 | PE、PP、PET、PVC、PS | 薄片、纤维、碎片、泡沫 | <0.5、0.5~1、1~5 | — | ②8±14~563±1219items/m2 | RS、SEM | [ |
三峡水库 (中国) | 表层水、 沉积物 | PS(38.5%)、 PP(29.4%)、 PE(21.0%) | 纤维>薄膜>碎片>微球 | <1 | 白色、蓝色、红色 | ①(1597~12611)×10-3,②25~300 | MR、RS | [ |
中国长江 中下游 (湖泊、河流、河口) | 地表水、 沉积物、 蛤蚌 | PES(33%)、 PP(19%)、 PE(9%) | 纤维>碎片>薄膜>微球 | 0.021~4.83 (0.25~1) | 白色、黑色、蓝色、绿色、黄色、红色 | ①0.5~3.1,②15~160,③0.3~4.9 | MR、 ATR-FTIR | [ |
中国珠江 (河口、城市 水体) | 地表水 | PAM(26.2%)、 Cellophane(23.1%)、 PP(13.1%)、 PE(10.0%) | 薄膜>碎片>纤维 | <0.5(80%)、0.5~5 | 蓝色、白色、绿色、红色 | ①(7850~10950)×10-3, ①(8725~53250)×10-3 | RS、SEM | [ |
西贡河 (越南) | 地表水 | PE(79%)、 PE/PP(15%)、 PP(2%)、 PET(4%) | 纤维>碎片 | 0.05~0.2 | 蓝色 | ①(172000~519000)×10-3, ①(10~223)×10-3 | MR、 ATR-FTIR | [ |
易北河 (德国) | 表层水 沉积物 | 表层水: PE(47.5%)、 PP(45.0%) 沉积物: PE(34.4%)、 PP(12.5%)、 PS(18.5%) | 表层水:纤维>碎片>微球>薄片 沉积物:微球>碎片>纤维>薄片 | 0.125~5 | — | ①(5.57±4.33)×10-3,②(3.35±6.60)×106items/m3 | MR、 ATR-FTIR、 pyr-GC-MS | [ |
莱茵河 (瑞士) | 河流 | PS(29.7%)、 PP(16.9%)、 PA(9.3%)、 PE(5.1%)、 PVC(1.7%) | 不透明微球(45.2%)、碎片(37.5%)、透明微球(13.2%)、纤维(2.5%) | 0.3~5 | — | ①892,777items/km2 | RS、SEM | [ |
阿托亚克河(墨西哥) | 河流沉积物 | — | 薄膜(25.9%)、 碎片(22.2%)、 纤维(14.8%) | — | 彩色(51%)、白色(49%) | ②4500±702.23 | SEM、EDX | [ |
太湖 (中国) | 表层水、沉积物、蛤蚌 | PET、PEST、PP | 纤维(48%~84%) | 0.1~1 | 蓝色(50%~63%)、白色/透明(29%~44%) | ①3.40~25.8 ②11.0~234.6 ③0.2~12.5 | MR、 FTIR、SEM、EDX | [ |
鄱阳湖 (中国) | 表层水、沉积物、鲫鱼 | PP(37%)、 PE(30%)、 PA(15%)、 PVC(8%) | 纤维>薄膜>碎片>微球 | <0.1、0.1~0.5、0.5~1、1~5、>5 表层水:<0.5(73.1%)、沉积物: <0.5(57.1%) | 透明>彩色>黑色>白色 | ①5~34②54~506 ③0~18 | MR、RS | [ |
洞庭湖 (中国) | 表层水、 沉积物 | PE(28.2%)、 PP(17.9%)、PET(12.8%)、PVC(10.3%)、PS(7.7%)、 PA(7.7%)、 PL(5.1%) | 纤维(50%~91%)、微球(5.67%~33.33%)、碎片(2.63%~20.00%) | 表层水:0.333~0.9 沉积物:<0.1 | 透明>绿色>红色>蓝色>白色 | ①0.62~4.31 ②210~520 ③0~18 | MR、FTIR | [ |
青海湖 (中国) | 湖泊沉积物 | PA、PE、PP、PET、PS、PVC | 纤维>碎片>微球>薄膜 | 0.05~0.1、0.1~0.2、0.2~0.3、0.3~0.5、0.5~1、1~2、2~5 | 透明、蓝色、红色、黑色、绿色、黄色、白色 | ②393±457 | MR、ATR-FTIR | [ |
维多利亚湖 (乌干达) | 湖泊表层水 | PE(60.5%)、PP、PS、PES | 碎片(36.7%)、 薄膜(25.0%)、 薄片(23.0%)、 细丝(15.0%)、 泡(0.3%) | 0.3~0.9、1.0~1.9、2.0~2.9、3.0~3.9、4.0~4.9 | 透明、蓝色、绿色、黑色、黄色、紫色、红色 | ①0.02±2.19 | MR、ATR-FTIR | [ |
渤海 (中国) | 海水(春>夏/冬>秋) | PE(43%)、PP(34%)、PS(19%)、PET(13%) | 细线(38%)、 碎片(5%)、 泡沫(13%)、 纤维(12%) | <0.33 | 白色、绿色 | ①(0.35±0.13)×10-3 | MR、FTIR | [ |
莱州湾 (中国) | 海水、 沉积物 | PET | 碎片>纤维 | 海水: (336.2~4997.7)×10-3 沉积物: (28.3~4933.0)×10-3 | 蓝色、白色 | a0.1±6.7,②193±1053 | MR、FTIR | [ |
中国(17省) | 农业土壤 | — | 薄膜 | 20~40土层 | — | ②80.3±49.3, ②308±138.1,②1075.6±346.8 | — | [ |
珠江三角洲(PRE)、 中国南海(SCS)、 东印度洋(EIO) | 大气 | PET(50.00%)、PP(22.22%) | 纤维(88.89%)、碎片(11.11%) | (851.09±578.30)×10-3 | 黑色、白色、红色、黄色、棕色、蓝色 | ④(4.2±2.5)×10-2, ④(0.8±1.3)×10-2, ④(0.4±0.6)×10-2 | MR | [ |
汉堡市 (德国) | 大气降尘 | PE(48.8%) | 碎片(95%)、 纤维(5%) | <0.063、0.063~0.3、 >0.3 | ④136.5~512.0items/(m2·d) | FM、RS | [ |
微塑料 | 生物酶 | 酶类型 | 微生物 | 菌类型 | 参考文献 |
---|---|---|---|---|---|
HDPE | 漆类多铜氧化酶(LMCOs) | 漆酶 | Aspergillus flavus PEDX3 | 真菌 | [ |
PE | 锰过氧化物酶(manganese peroxidase) | 过氧化物酶 | Pestalotiopsis microspora | 真菌 | [ |
PE | 酯酶(esterase) | 水解酶 | Rhodococcus ruber | 放线菌 | [ |
PET | PETase、MHETase | 水解酶 | Ideonella sakaiensis 201-F6 | 细菌 | [ |
PET | 角质酶(cutinase) | 水解酶 | Humicola insolensc | 真菌 | [ |
PET | 脂肪酶(lipase) | 水解酶 | Candida antarctica | 真菌 | [ |
PS | 丝氨酸水解酶(serine hydrolase) | 水解酶 | Pseudomonas sp. DSM 50071 | 细菌 | [ |
PU | 酯酶(esterase)、脲酶(urease) | 水解酶 | Cladosporium pseudocladosporioides T1.PL.1 | 细菌 | [ |
PU | 脂肪酶(lipase) | 水解酶 | Pseudomonas fluorescens, Serratia marcescens | 细菌 | [ |
PU | 脲酶(urease) | 水解酶 | Trichoderma sp. | 真菌 | [ |
PU | 丝氨酸水解酶(serine hydrolase) | 水解酶 | Pestalotiopsis microspora | 真菌 | [ |
PLA | 解聚酶(depolymerase) | 水解酶 | Amycolatopsis sp. | 细菌 | [ |
表2 参与不同微塑料降解的生物酶
微塑料 | 生物酶 | 酶类型 | 微生物 | 菌类型 | 参考文献 |
---|---|---|---|---|---|
HDPE | 漆类多铜氧化酶(LMCOs) | 漆酶 | Aspergillus flavus PEDX3 | 真菌 | [ |
PE | 锰过氧化物酶(manganese peroxidase) | 过氧化物酶 | Pestalotiopsis microspora | 真菌 | [ |
PE | 酯酶(esterase) | 水解酶 | Rhodococcus ruber | 放线菌 | [ |
PET | PETase、MHETase | 水解酶 | Ideonella sakaiensis 201-F6 | 细菌 | [ |
PET | 角质酶(cutinase) | 水解酶 | Humicola insolensc | 真菌 | [ |
PET | 脂肪酶(lipase) | 水解酶 | Candida antarctica | 真菌 | [ |
PS | 丝氨酸水解酶(serine hydrolase) | 水解酶 | Pseudomonas sp. DSM 50071 | 细菌 | [ |
PU | 酯酶(esterase)、脲酶(urease) | 水解酶 | Cladosporium pseudocladosporioides T1.PL.1 | 细菌 | [ |
PU | 脂肪酶(lipase) | 水解酶 | Pseudomonas fluorescens, Serratia marcescens | 细菌 | [ |
PU | 脲酶(urease) | 水解酶 | Trichoderma sp. | 真菌 | [ |
PU | 丝氨酸水解酶(serine hydrolase) | 水解酶 | Pestalotiopsis microspora | 真菌 | [ |
PLA | 解聚酶(depolymerase) | 水解酶 | Amycolatopsis sp. | 细菌 | [ |
微塑料 | 降解菌 | 类群 | 来源 | 时间 | 降解效果 (质量损失) | 参考文献 |
---|---|---|---|---|---|---|
LDPE | 不动杆菌(Acinetobacterpitti IRN19) | 细菌-变形菌门 | 垃圾填埋场 | 4周 | (26.8±3.04)% | [ |
PE | 假单胞菌(Pseudomonasknackmussii N1-2、Pseudomonasaeruginosa RD1-3) | 细菌-变形菌门 | 污水处理厂污泥 | 8周 | (5.95±0.03)%、(3.62±0.32)% | [ |
LDPE、PET、PS | 食碱菌(Alcanivorax borkumensis) | 细菌-变形菌门 | 海洋塑料垃圾 | 80天 | (3.5±0.34)% | [ |
PE | 芽孢杆菌(Bacillus sp.) 类芽孢杆菌(Paenibacillus sp.) | 细菌-厚壁菌门 | 城市垃圾填埋场 | 60天 | 14.7%(混合菌) | [ |
LDPE | 鞘氨醇杆菌(Sphingobacteriummoltivourum IRN11) | 细菌-拟杆菌门 | 垃圾填埋场 | 4周 | 约18.0% | [ |
PET | Ideonella sakaiensis 201-F6 | 细菌-变形菌门(β-变形菌纲) | 土壤 | 6周 | 100% | [ |
PP | 芽孢杆菌(Bacillus sp. 27) | 细菌-厚壁菌门 | 红树林沉积物 | 40天 | 4.0% | [ |
PS | 假单胞菌(Pseudomonas sp. DSM 50071) | 细菌-变形菌门 | 大麦虫肠道 | 21天 | 2g→0.22g | [ |
PS | 不动杆菌(Acinetobacter sp. AnTc⁃1) | 细菌-变形菌门 | 赤拟谷盗幼虫肠道 | 60天 | 12.14% | [ |
PS | 芽孢杆菌(Geobacillus stearothermophilus FAFU011) | 细菌-厚壁菌门 | 高温堆肥熟料 | 56天 | 4.2% | [ |
LDPE | 曲霉菌(Aspergillus oryzae A5,1、Aspergillus fumigatus B2,2、Aspergillus nidulans E1,2、 Aspergillus nidulans E4,1) 镰孢菌(Fusarium sp. AF4) | 真菌-子囊菌门 | 城市垃圾处理厂土壤 | 16周 | 5%~9% | [ |
HDPE | 黄曲霉菌(Aspergillus flavus PEDX3) | 真菌-子囊菌门 | 蜡螟肠道 | 28天 | (3.9025±1.18)% | [ |
PU | 芽枝霉菌(Cladosporium pseudocladosporioides T1.PL.1) | 真菌-子囊菌门 | 矿场土壤 | 14天 | 65% | [ |
LDPE | 链霉菌(Streptomyces sp. IR-SGS-T10、Streptomyces sp. IR-SGS-T4) 红球菌(Rhodococcus sp. IR-SGS-T6) 诺卡氏菌(Nocardia sp. IR-SGS-T3) | 放线菌 | 塑料垃圾填埋场 | 60天 | 约1.0mg/(g·d) (最大1.58) | [ |
PP | 红球菌(Rhodococcus sp. 36) | 放线菌 | 红树林沉积物 | 40天 | 6.4% | [ |
表3 典型微生物介导微塑料降解
微塑料 | 降解菌 | 类群 | 来源 | 时间 | 降解效果 (质量损失) | 参考文献 |
---|---|---|---|---|---|---|
LDPE | 不动杆菌(Acinetobacterpitti IRN19) | 细菌-变形菌门 | 垃圾填埋场 | 4周 | (26.8±3.04)% | [ |
PE | 假单胞菌(Pseudomonasknackmussii N1-2、Pseudomonasaeruginosa RD1-3) | 细菌-变形菌门 | 污水处理厂污泥 | 8周 | (5.95±0.03)%、(3.62±0.32)% | [ |
LDPE、PET、PS | 食碱菌(Alcanivorax borkumensis) | 细菌-变形菌门 | 海洋塑料垃圾 | 80天 | (3.5±0.34)% | [ |
PE | 芽孢杆菌(Bacillus sp.) 类芽孢杆菌(Paenibacillus sp.) | 细菌-厚壁菌门 | 城市垃圾填埋场 | 60天 | 14.7%(混合菌) | [ |
LDPE | 鞘氨醇杆菌(Sphingobacteriummoltivourum IRN11) | 细菌-拟杆菌门 | 垃圾填埋场 | 4周 | 约18.0% | [ |
PET | Ideonella sakaiensis 201-F6 | 细菌-变形菌门(β-变形菌纲) | 土壤 | 6周 | 100% | [ |
PP | 芽孢杆菌(Bacillus sp. 27) | 细菌-厚壁菌门 | 红树林沉积物 | 40天 | 4.0% | [ |
PS | 假单胞菌(Pseudomonas sp. DSM 50071) | 细菌-变形菌门 | 大麦虫肠道 | 21天 | 2g→0.22g | [ |
PS | 不动杆菌(Acinetobacter sp. AnTc⁃1) | 细菌-变形菌门 | 赤拟谷盗幼虫肠道 | 60天 | 12.14% | [ |
PS | 芽孢杆菌(Geobacillus stearothermophilus FAFU011) | 细菌-厚壁菌门 | 高温堆肥熟料 | 56天 | 4.2% | [ |
LDPE | 曲霉菌(Aspergillus oryzae A5,1、Aspergillus fumigatus B2,2、Aspergillus nidulans E1,2、 Aspergillus nidulans E4,1) 镰孢菌(Fusarium sp. AF4) | 真菌-子囊菌门 | 城市垃圾处理厂土壤 | 16周 | 5%~9% | [ |
HDPE | 黄曲霉菌(Aspergillus flavus PEDX3) | 真菌-子囊菌门 | 蜡螟肠道 | 28天 | (3.9025±1.18)% | [ |
PU | 芽枝霉菌(Cladosporium pseudocladosporioides T1.PL.1) | 真菌-子囊菌门 | 矿场土壤 | 14天 | 65% | [ |
LDPE | 链霉菌(Streptomyces sp. IR-SGS-T10、Streptomyces sp. IR-SGS-T4) 红球菌(Rhodococcus sp. IR-SGS-T6) 诺卡氏菌(Nocardia sp. IR-SGS-T3) | 放线菌 | 塑料垃圾填埋场 | 60天 | 约1.0mg/(g·d) (最大1.58) | [ |
PP | 红球菌(Rhodococcus sp. 36) | 放线菌 | 红树林沉积物 | 40天 | 6.4% | [ |
1 | ADYEL T M. Accumulation of plastic waste during COVID-19[J]. Science, 2020, 369(6509): 1314-1315. |
2 | THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at Sea: Where is all the plastic?[J]. Science, 2004, 304(5672): 838. |
3 | BARNES D K A, GALGANI F, THOMPSON R C, et al. Accumulation and fragmentation of plastic debris in global environments[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2009, 364(1526): 1985-1998. |
4 | MAI L, SUN X F, XIA L L, et al. Global riverine plastic outflows[J]. Environmental Science & Technology, 2020, 54(16): 10049-10056. |
5 | HERNANDEZ L M, YOUSEFI N, TUFENKJI N. Are there nanoplastics in your personal care products ? [ J ] . Environmental Science & Technology Letters, 2017, 4(7): 280-285. |
6 | ZANG Huadong, ZHOU Jie, MARSHALL M R, et al. Microplastics in the agroecosystem: Are they an emerging threat to the plant-soil system?[J]. Soil Biology & Biochemistry, 2020, 148: 107926. |
7 | BOOTS B, RUSSELL C, GREEN D. Effects of microplastics in soil ecosystems: Above and below ground[J]. Environmental Science & Technology, 2019, 53(19): 11496-11506. |
8 | SCHMID C, COZZARINI L, ZAMBELLO E. Microplastic's story[J]. Marine Pollution Bulletin, 2021, 162: 111820. |
9 | XU Mingkai, HALIMU G, ZHANG Qianru, et al. Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell[J]. Science of the Total Environment, 2019, 694: 133794. |
10 | WU Shijin, WU Mei, TIAN Dongcan, et al. Effects of polystyrene microbeads on cytotoxicity and transcriptomic profiles in human Caco-2 cells[J]. Environmental Toxicology, 2020, 35(4): 495-506. |
11 | HWANG J, CHOI D, HAN S, et al. An assessment of the toxicity of polypropylene microplastics in human derived cells[J]. Science of the Total Environment, 2019, 684: 657-669. |
12 | ZHANG Tian, JIANG Bo, XING Yi, et al. Current status of microplastics pollution in the aquatic environment, interaction with other pollutants, and effects on aquatic organisms[J]. Environmental Science and Pollution Research International, 2022, 29(12): 16830-16859. |
13 | ZHU Fengxiao, ZHU Changyin, WANG Chao, et al. Occurrence and ecological impacts of microplastics in soil systems: A review[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(6): 741-749. |
14 | ZHANG G S, LIU Y F. The distribution of microplastics in soil aggregate fractions in southwestern China[J]. Science of the Total Environment, 2018, 642: 12-20. |
15 | CHU Junhong, LIU Haoming, SALVO A. Air pollution as a determinant of food delivery and related plastic waste[J]. Nature Human Behaviour, 2021, 5(2): 212. |
16 | WALDSCHLÄGER K, LECHTHALER S, STAUCH G, et al. The way of microplastic through the environment-application of the source-pathway-receptor model ( r e v i e w ) [ J ] . Science of the Total Environment2020, 713: 136584. |
17 | LI Yunxue, LIU Xianhua, SHINDE S, et al. Impacts of micro- and nanoplastics on photosynthesis activities of photoautotrophs: A mini-review[J]. Frontiers in Microbiology, 2021, 12: 773226. |
18 | CASTRO-CASTELLON A T, HORTON A A, HUGHES J M R, et al. Ecotoxicity of microplastics to freshwater biota: Considering exposure and hazard across trophic levels[J]. Science of the Total Environment, 2022, 816: 151638. |
19 | DANG Fei, WANG Qingyu, HUANG Yingnan, et al. Key knowledge gaps for one health approach to mitigate nanoplastic risks[J]. Eco-Environment & Health, 2022, 1(1): 11-22. |
20 | SRIDHARAN S, KUMAR M, SAHA M, et al. The polymers and their additives in particulate plastics: What makes them hazardous to the fauna?[J]. Science of the Total Environment, 2022, 824: 153828. |
21 | KUMAR G A, ANJANA K, HINDUJA M, et al. Review on plastic wastes in marine environment-Biodegradation and biotechnological solutions[J]. Marine Pollution Bulletin, 2020, 150: 110733. |
22 | AHMED T, SHAHID M, AZEEM F, et al. Biodegradation of plastics: Current scenario and future prospects for environmental safety[J]. Environmental Science and Pollution Research, 2018, 25(8): 7287-7298. |
23 | YOSHIDA S, HIRAGA K, TAKEHANA T, et al. A bacterium that degrades and assimilates poly(ethylene t e r e p h t h a l a t e ) [ J ] . Science, 2016, 351(6278): 1196-1199. |
24 | 张雅珊, 陈宗耀, 马伟芳. 微塑料的迁移转化及其生态风险研究进展[J]. 化工进展, 2022, 41(11): 6080-6098. |
ZHANG Yashan, CHEN Zongyao, MA Weifang. Research progress on the migration and transformation of microplastics and environmental risks[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6080-6098. | |
25 | AUTA H S, EMENIKE C U, FAUZIAH S H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions[J]. Environment International, 2017, 102: 165-176. |
26 | COLE M, LINDEQUE P, HALSBAND C, et al. Microplastics as contaminants in the marine environment: A review[J]. Marine Pollution Bulletin, 2011, 62(12): 2588-2597. |
27 | HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586: 127-141. |
28 | 辛颖, 王天成, 金书含, 等. 聚乳酸市场现状及合成技术进展[J]. 现代化工, 2020, 40(S1): 71-74. |
XIN Ying, WANG Tiancheng, JIN Shuhan, et al. Present market situation and synthesis technology advances of PLA[J]. Modern Chemical Industry, 2020, 40(S1): 71-74. | |
29 | FAN Xiulei, ZOU Yefeng, GENG Nan, et al. Investigation on the adsorption and desorption behaviors of antibiotics by degradable MPs with or without UV ageing process[J]. Journal of Hazardous Materials, 2021, 401: 123363. |
30 | STOLTE A, FORSTER S, GERDTS G, et al. Microplastic concentrations in beach sediments along the German Baltic coast[J]. Marine Pollution Bulletin, 2015, 99(1): 216-229. |
31 | WANG Lingling, GUO Chengxin, QIAN Qianqian, et al. Adsorption behavior of UV aged microplastics on the heavy metals Pb(Ⅱ) and Cu(Ⅱ) in aqueous solutions[J]. Chemosphere, 2023, 313: 137439. |
32 | SUN H Y, JIAO R Y, WANG D S. The difference of aggregation mechanism between microplastics and nanoplastics: Role of Brownian motion and structural layer force[J]. Environmental Pollution, 2021, 268: 115942. |
33 | GIGAULT J, HADRI H EL, NGUYEN B, et al. Nanoplastics are neither microplastics nor engineered nanoparticles[J]. Nature Nanotechnology, 2021, 16(5): 501-507. |
34 | ALI I, DING T D, PENG C S, et al. Micro- and nanoplastics in wastewater treatment plants: Occurrence, removal, fate, impacts and remediation technologies—A critical review[J]. Chemical Engineering Journal, 2021, 423: 130205. |
35 | LIU L, XU K X, ZHANG B W, et al. Cellular internalization and release of polystyrene microplastics and nanoplastics[J]. Science of the Total Environment, 2021, 779: 146523. |
36 | LEHNER R, WEDER C, PETRI-FINK A, et al. Emergence of nanoplastic in the environment and possible impact on human health[J]. Environmental Science & Technology, 2019, 53(4): 1748-1765. |
37 | SRIDHARAN S, KUMAR M, BOLAN N S, et al. Are microplastics destabilizing the global network of terrestrial and aquatic ecosystem services?[J]. Environmental Research, 2021, 198: 111243. |
38 | 杨光蓉, 陈历睿, 林敦梅. 土壤微塑料污染现状、来源、环境命运及生态效应[J]. 中国环境科学, 2021, 41(1): 353-365. |
YANG Guangrong, CHEN Lirui, LIN Dunmei. Status, sources, environmental fate and ecological consequences of microplastic pollution in soil[J]. China Environmental Science, 2021, 41(1): 353-365. | |
39 | 陈兴兴, 刘敏, 陈滢. 淡水环境中微塑料污染研究进展[J]. 化工进展, 2020, 39(8): 3333-3343. |
CHEN Xingxing, LIU Min, CHEN Ying. Microplastics pollution in freshwater environment[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3333-3343. | |
40 | GONZALEZ-PLEITER M, VELAZQUEZ D, EDO C, et al. Fibers spreading worldwide: Microplastics and other anthropogenic litter in an arctic freshwater lake[J]. The Science of the Total Environment, 2020, 722: 137904. |
41 | GONZALEZ-PLEITER M, EDO C, VELAZQUEZ D, et al. First detection of microplastics in the freshwater of an antarctic specially protected area[J]. Marine Pollution Bulletin, 2020, 161: 111811. |
42 | NEELAVANNAN K, SEN I S, LONE A M, et al. Microplastics in the high-altitude Himalayas: Assessment of microplastic contamination in freshwater lake sediments, Northwest Himalaya ( I n d i a ) [ J ] . Chemosphere, 2022, 290: 133354. |
43 | ZHANG Kai, SU Jing, XIONG Xiong, et al. Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China[J]. Environmental Pollution, 2016, 219: 450-455. |
44 | DI Mingxiao, WANG Jun. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2018, 616-617: 1620-1627. |
45 | SU Lei, CAI Huiwen, KOLANDHASAMY P, et al. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems[J]. Environmental Pollution, 2018, 234: 347-355. |
46 | YAN Muting, NIE Huayue, XU Kaihang, et al. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou city and Pearl River estuary, China[J]. Chemosphere, 2019, 217: 879-886. |
47 | LAHENS L, STRADY E, T-C KIEU-LE, et al. Macroplastic and microplastic contamination assessment of a tropical river (Saigon River, Vietnam) transversed by a developing megacity[J]. Environmental Pollution, 2018, 236: 661-671. |
48 | SCHERER C, WEBER A, STOCK F, et al. Comparative assessment of microplastics in water and sediment of a large European river[J]. Science of the Total Environment, 2020, 738: 139866. |
49 | MANI T, HAUK A, WALTER U, et al. Microplastics profile along the Rhine River[J]. Scientific Reports, 2015, 5: 17988. |
50 | SHRUTI V C, JONATHAN M P, RODRIGUEZ-ESPINOSA P F, et al. Microplastics in freshwater sediments of Atoyac River basin, Puebla City, Mexico[J]. Science of the Total Environment, 2019, 654: 154-163. |
51 | SU Lei, XUE Yingang, LI Lingyun, et al. Microplastics in Taihu Lake, China[J]. Environmental Pollution, 2016, 216: 711-719. |
52 | YUAN Wenke, LIU Xiaoning, WANG Wenfeng, et al. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China[J]. Ecotoxicology and Environmental Safety, 2019, 170: 180-187. |
53 | HU Duofei, ZHANG Yaxin, SHEN Maocai. Investigation on microplastic pollution of Dongting Lake and its affiliated rivers[J]. Marine Pollution Bulletin, 2020, 160: 111555. |
54 | JIANG Ning, LUO Wei, ZHAO Pin, et al. Distribution of microplastics in benthic sediments of Qinghai Lake on the Tibetan Plateau, China[J]. Science of the Total Environment, 2022, 835: 155434. |
55 | EGESSA R, NANKABIRWA A, OCAYA H, et al. Microplastic pollution in surface water of Lake Victoria[J]. Science of the Total Environment, 2020, 741: 140201. |
56 | ZHANG Weiwei, ZHANG Shoufeng, ZHAO Qian, et al. Spatio-temporal distribution of plastic and microplastic debris in the surface water of the Bohai Sea, China[J]. Marine Pollution Bulletin, 2020, 158: 111343. |
57 | MENDOZA A, OSA J L, BASURKO O C, et al. Microplastics in the Bay of Biscay: An overview[J]. Marine Pollution Bulletin, 2020, 153: 110996. |
58 | WANG X H, LI C J, LIU K, et al. Atmospheric microplastic over the South China Sea and East Indian Ocean: abundance, distribution and source[J]. Journal of Hazardous Materials, 2020, 389: 121846. |
59 | HUANG Yi, LIU Qin, JIA Weiqian, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment[J]. Environmental Pollution, 2020, 260: 114096. |
60 | WAZNE M, MERMILLOD-BLONDIN F, VALLIER M, et al. Microplastics in freshwater sediments impact the role of a main bioturbator in ecosystem functioning[J]. Environmental Science & Technology, 2023. DOI: 10. 1021/acs. est. 2c05662 . |
61 | HE Liuyue, LI Zhongbin, JIA Qian, et al. Soil microplastics pollution in agriculture[J]. Science, 2023, 379(6632): 547-547. |
62 | 李爱峰, 李方晓, 邱江兵, 等. 水环境中微塑料的污染现状、生物毒性及控制策略[J]. 中国海洋大学学报, 2021, 49(10): 88-100. |
LI Aifeng, LI Fangxiao, QIU Jiangbing, et al. Pollution status, biological toxicity and control strategy of microplastics in water environments: A review[J]. Periodical of Ocean University of China, 2019, 49(10): 88-100. | |
63 | QI Kun, LU Nan, ZHANG Shunqing, et al. Uptake of Pb(II) onto microplastic-associated biofilms in freshwater: Adsorption and combined toxicity in comparison to natural solid substrates[J]. Journal of Hazardous Materials, 2021, 411: 125115. |
64 | PATHAN S I, ARFAIOLI P, BARDELLI T, et al. Soil pollution from micro- and nanoplastic debris: A hidden and unknown biohazard[J]. Sustainability, 2020, 12(18): 7255. |
65 | WANG Ting, HU Menghong, SONG Lili, et al. Coastal zone use influences the spatial distribution of microplastics in Hangzhou Bay, China[J]. Environmental Pollution, 2020, 266: 115137. |
66 | ATUGODA T, VITHANAGE M, WIJESEKARA H, et al. Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport[J]. Environment International, 2021, 149: 106367. |
67 | VIRSEK M K, LOVSIN M N, KOREN S, et al. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida[J]. Marine Pollution Bulletin, 2017, 125(1/2): 301-309. |
68 | BAUDRIMONT M, ARINI A, GUÉGAN C, et al. Ecotoxicity of polyethylene nanoplastics from the North Atlantic oceanic gyre on freshwater and marine organisms (microalgae and filter-feeding bivalves)[J]. Environmental Science and Pollution Research, 2020, 27(4): 3746-3755. |
69 | 邵雪纯, 胡双庆, 张琪, 等. 聚乳酸微塑料及其复合污染的生物毒性效应与机制研究进展[J]. 中国环境科学, 2023, 43(2): 935-945. |
SHAO Xuechun, HU Shuangqing, ZHANG Qi, et al. Research progress on biotoxicological effects and mechanism of polylactic acid microplastics and their combined pollution[J]. China Environmental Science, 2023, 43(2): 935-945. | |
70 | SUN Peipei, LIU Xuemin, ZHANG Minghui, et al. Sorption and leaching behaviors between aged MPs and BPA in water: The role of BPA binding modes within plastic matrix[J]. Water Research, 2021, 195: 116956. |
71 | BARHOUMI B, SANDER S G, TOLOSA I. A review on per- and polyfluorinated alkyl substances (PFASs) in microplastic and food-contact materials[J]. Environmental Research, 2022, 206: 112595. |
72 | BRINGER A, LE FLOCH S, KERSTAN A, et al. Coastal ecosystem inventory with characterization and identification of plastic contamination and additives from aquaculture materials[J]. Marine Pollution Bulletin, 2021, 167: 112286. |
73 | KLEIN M, FISCHER E K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany[J]. Science of the Total Environment, 2019, 685: 96-103. |
74 | LUCAS N, BIENAIME C, BELLOY C, et al. Polymer biodegradation: mechanisms and estimation techniques[J]. Chemosphere, 2008, 73(4): 429-442. |
75 | MONTAZER Z, HABIBI-NAJAFI M B, MOHEBBI M, et al. Microbial degradation of UV-pretreated low-density polyethylene films by novel polyethylene-degrading bacteria isolated from plastic-dump soil[J]. Journal of Polymers and the Environment, 2018, 26(9): 3613-3625. |
76 | ZHANG Junqing, GAO Danling, LI Quanhao, et al. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella [J]. Science of the Total Environment, 2020, 704: 135931. |
77 | BHARDWAJ H, GUPTA R, TIWARI A. Communities of microbial enzymes associated with biodegradation of plastics[J]. Journal of Polymers and the Environment, 2012, 21(2): 575-579. |
78 | FOLINO A, KARAGEORGIOU A, CALABRÒ P S, et al. Biodegradation of wasted bioplastics in natural and industrial environments: A review[J]. Sustainability, 2020, 12(15): 7255. |
79 | EMADIAN S M, ONAY T T, DEMIREL B. Biodegradation of bioplastics in natural environments[J]. Waste Management, 2017, 59: 526-536. |
80 | HARRISON J P, BOARDMAN C, O'CALLAGHAN K, et al. Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review[J]. Royal Society Open Science, 2018, 5(5): 171792. |
81 | HOU Lijun, XI Jiao, LIU Jiaxi, et al. Biodegradability of polyethylene mulching film by two Pseudomonas bacteria and their potential degradation mechanism[J]. Chemosphere, 2022, 286: 131758. |
82 | PARK S Y, KIM C G. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site[J]. Chemosphere, 2019, 222: 527-533. |
83 | KIM H R, LEE H M, YU H C, et al. Biodegradation of polystyrene by Pseudomonas sp. Isolated from the gut of superworms (Larvae of Zophobas atratus)[J]. Environmental Science & Technology, 2020, 54(11): 6987-6996. |
84 | AUTA H S, EMENIKE C U, JAYANTHI B, et al. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp.and Rhodococcus sp.isolated from mangrove sediment[J]. Marine Pollution Bulletin, 2018, 127: 15-21. |
85 | YANG J, YANG Y, WU W M, et al. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms[J]. Environmental Science & Technology, 2014, 48(23): 13776-13784. |
86 | PEIXOTO J, SILVA L P, KRÜGER R H. Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation[J]. Journal of Hazardous Materials, 2017, 324: 634-644. |
87 | AUTA H S, EMENIKE C U, FAUZIAH S H. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation[J]. Environmental Pollution, 2017, 231: 1552-1559. |
88 | CARNIEL A, VALONI E, NICOMEDES JUNIOR J, et al. Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid[J]. Process Biochemistry, 2017, 59: 84-90. |
89 | SKARIYACHAN S, TASKEEN N, KISHORE A P, et al. Novel consortia of Enterobacter and Pseudomonas formulated from cow dung exhibited enhanced biodegradation of polyethylene and polypropylene[J]. Journal of Environmental Management, 2021, 284: 112030. |
90 | YUAN Jianhua, MA Jie, SUN Yiran, et al. Microbial degradation and other environmental aspects of microplastics/plastics[J]. Science of the Total Environment, 2020, 715: 136968. |
91 | SANCHEZ C. Fungal potential for the degradation of petroleum-based polymers: An overview of macro- and microplastics biodegradation[J]. Biotechnology Advances, 2020, 40: 107501. |
92 | MUHONJA C N, MAKONDE H, MAGOMA G, et al. Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya[J]. PLoS One, 2018, 13(7): e0198446. |
93 | SOLEIMANI Z, GHARAVI S, SOUDI M, et al. A survey of intact low-density polyethylene film biodegradation by terrestrial Actinobacterial species[J]. International Microbiology, 2021, 24(1): 65-73. |
94 | HABIB S, IRUTHAYAM A, SHUKOR M Y ABD, et al. Biodeterioration of untreated polypropylene microplastic particles by Antarctic bacteria[J]. Polymers, 2020, 12(11): 2616. |
95 | WANG Jianlong, GUO Xuan, XUE Jianming. Biofilm-developed microplastics as vectors of pollutants in aquatic environments[J]. Environmental Science & Technology, 2021, 55(19): 12780-12790. |
96 | CUNHA C, SILVA L, PAULO J, et al. Microalgal-based biopolymer for nano- and microplastic removal: A possible biosolution for wastewater treatment[J]. Environmental Pollution, 2020, 263: 114385. |
97 | CHEN Zhi, ZHAO Wenqi, XING Ruizhi, et al. Enhanced in situ biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology[J]. Journal of Hazardous Materials, 2020, 384. |
98 | 邢睿智, 赵子强, 赵文琪, 等. 嗜热脂肪地芽胞杆菌对聚苯乙烯的降解性能[J]. 环境科学, 2021, 42(6): 3056-3062. |
XING Ruizhi, ZHAO Ziqiang, ZHAO Wenqi, et al. Biodegradation of polystyrene by Geobacillus stearothermophilus [J]. Environmental Science, 2021, 42(6): 3056-3062. | |
99 | CARUSO G. Plastic degrading microorganisms as a tool for bioremediation of plastic contamination in aquatic environments[J]. Journal of Pollution Effects & Control, 2015, 03(03). |
100 | Xuemin LYU, DONG Qian, ZUO Zhiqiang, et al. Microplastics in a municipal wastewater treatment plant: Fate, dynamic distribution, removal efficiencies, and control strategies[J]. Journal of Cleaner Production, 2019, 225: 579-586. |
101 | WAN X, HUANG H Y, LIAO Z C, et al. The distribution and risk of microplastics discharged from sewage treatment plants in terrestrial and aquatic compartment[J]. Journal of Environmental Management, 2022, 314. |
102 | ZHANG Xiaolei, CHEN Jiaxin, LI Ji. The removal of microplastics in the wastewater treatment process and their potential impact on anaerobic digestion due to pollutants association[J]. Chemosphere, 2020, 251: 126360. |
103 | GILAN I, HADAR Y, SIVAN A. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber [J]. Applied Microbiology and Biotechnology, 2004, 65(1): 97-104. |
104 | ALVAREZ-BARRAGAN J, DOMINGUEZ-MALFAVON L, VARGAS-SUAREZ M, et al. Biodegradative activities of selected environmental fungi on a polyester polyurethane varnish and polyether polyurethane foams[J]. Applied and Environmental Microbiology, 2016, 82(17): 5225-5235. |
105 | HOWARD G T. Biodegradation of polyurethane: a review[J]. International Biodeterioration & Biodegradation, 2002, 49(4): 245-252. |
106 | KAWAI F. Polylactic acid (PLA)-degrading microorganisms and PLA depolymerases[M]//Green Polymer Chemistry: Biocatalysis and Biomaterials, 2010, 405-414. |
107 | OTHMAN A R, HASAN H A, MUHAMAD M H, et al. Microbial degradation of microplastics by enzymatic processes: a review[J]. Environmental Chemistry Letters, 2021, 19(4): 3057-3073. |
108 | SHIN J, KIM J E, LEE Y W, et al. Fungal cytochrome P450s and the P450 complement (CYPome) of Fusarium graminearum [J]. Toxins, 2018, 10(3): 112. |
109 | DELACUVELLERIE A, CYRIAQUE V, GOBERT S, et al. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation[J]. Journal of Hazardous Materials, 2019, 380: 120899. |
110 | WANG Zhe, XIN Xin, SHI Xiaofan, et al. A polystyrene-degrading Acinetobacter bacterium isolated from the larvae of Tribolium castaneum [J]. Science of the Total Environment, 2020, 726: 138564. |
111 | ABRUSCI C, PABLOS J L, CORRALES T, et al. Biodegradation of photo-degraded mulching films based on polyethylenes and stearates of calcium and iron as pro-oxidant additives[J]. International Biodeterioration & Biodegradation, 2011, 65(3): 451-459. |
[1] | 龚德成, 沈倩, 朱贤青, 黄云, 夏奡, 张敬苗, 朱恂, 廖强. 微藻超临界水气化制取富氢合成气的研究进展[J]. 化工进展, 2024, 43(7): 3709-3728. |
[2] | 曹景沛, 姚乃瑜, 庞新博, 赵小燕, 赵静平, 蔡士杰, 徐敏, 冯晓博, 伊凤娇. 煤热解研究进展及其发展历程[J]. 化工进展, 2024, 43(7): 3620-3636. |
[3] | 齐亚兵, 吴子波, 杨清翠. Pickering乳液制备及稳定性研究进展[J]. 化工进展, 2024, 43(4): 2017-2030. |
[4] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[5] | 许中硕, 周盼盼, 王宇晖, 黄威, 宋新山. 硫铁矿介导的自养反硝化研究进展[J]. 化工进展, 2023, 42(9): 4863-4871. |
[6] | 杨子育, 朱玲, 王文龙, 于超凡, 桑义敏. 阴燃法处理含油污泥的研究及应用进展[J]. 化工进展, 2023, 42(7): 3760-3769. |
[7] | 朱紫旋, 陈俊江, 张星星, 李祥, 刘文如, 吴鹏. 基于短程反硝化厌氧氨氧化新型污水生物脱氮工艺的研究进展[J]. 化工进展, 2023, 42(4): 2091-2100. |
[8] | 胡璇, 陈滢. 聚酯纤维微塑料胁迫下活性污泥系统性能及微生物群落的变化情况[J]. 化工进展, 2023, 42(2): 1051-1060. |
[9] | 周红阳, 周逸寰, 张连秀, 梁鼎成, 解强. VOCs在活性炭中的堆积:形成机制及影响因素[J]. 化工进展, 2023, 42(11): 5969-5980. |
[10] | 武诗宇, 杜志平, 申婧, 李剑锋, 程芳琴, 赵华章. 生物电芬顿系统在废水处理中的研究进展[J]. 化工进展, 2023, 42(11): 5929-5942. |
[11] | 苏景振, 詹健. 生物炭对水环境中微塑料的去除研究进展[J]. 化工进展, 2023, 42(10): 5445-5458. |
[12] | 付佳, 谌伦建, 徐冰, 华绍烽, 李从强, 杨明坤, 邢宝林, 仪桂云. 模拟煤炭气化废水中苯酚的微生物降解[J]. 化工进展, 2023, 42(1): 526-537. |
[13] | 刘雅娟. 浸没式PAC-AMBRs系统中PAC缓解膜污染的研究进展[J]. 化工进展, 2023, 42(1): 457-468. |
[14] | 刘亚利, 张宏伟, 康晓荣. 微塑料对污泥厌氧消化的影响和机理[J]. 化工进展, 2022, 41(9): 5037-5046. |
[15] | 郭之晗, 徐云翔, 李天皓, 黄子川, 刘文如, 沈耀良. 好氧颗粒污泥长期稳定运行研究进展[J]. 化工进展, 2022, 41(5): 2686-2697. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |