1 |
ALI I, ALHARBI O M L, ALOTHMAN Z A, et al. Kinetics, thermodynamics, and modeling of amido black dye photodegradation in water using Co/TiO2 nanoparticles[J]. Photochemistry and Photobiology, 2018, 94(5): 935-941.
|
2 |
ADANE T, ADUGNA A T, ALEMAYEHU E. Textile industry effluent treatment techniques[J]. Journal of Chemistry, 2021, 2021. .
|
3 |
FANG Yuanxing, ZHENG Yun, FANG Tao, et al. Photocatalysis: An overview of recent developments and technological advancements[J]. Science China-Chemistry, 2020, 63(2): 149-181.
|
4 |
NAVEEN K, ANUJ M, YADAV M, et al. Photocatalytic TiO2/CdS/ZnS nanocomposite induces Bacillus subtilis cell death by disrupting its metabolism and membrane integrity[J]. Indian Journal of Microbiology, 2021, 61(4): 487-496.
|
5 |
DU Juan, WANG Zheng, LI YeHua, et al. Establishing WO3/g-C3N4 composite for “memory” photocatalytic activity and enhancement in photocatalytic degradation[J]. Catalysis Letters, 2019, 149(5): 1167-1173.
|
6 |
HUANG Jiale, LIN Liqin, SUN Daohua, et al. Bio-inspired synthesis of metal nanomaterials and applications[J]. Chemical Society Reviews, 2015, 44(17): 6330-6374.
|
7 |
宋苗苗, 郭梅婷, 蔡东仁, 等. 基于稻谷壳模板制备层状硅酸盐催化剂用于CO2加氢反应[J]. 化学反应工程与工艺, 2022, 38(4): 318-328.
|
|
SONG Miaomiao, GUO Meiting, CAI Dongren, et al. Preparation of phyllosilicate catalysts using rice husk as template for CO2 hydrogenation[J]. Chemical Reaction Engineering and Technology, 2022, 38(4): 318-328.
|
8 |
KANG S H, BOZHILOV K N, MYUNG N V, et al. Microbial synthesis of CdS nanocrystals in genetically engineered E. coli [J]. Angewandte Chemie International Edition, 2008, 47(28): 5186-5189.
|
9 |
ZHOU Z Y, BEDWEL G J, LI R, et al. Pathways for gold nucleation and growth over protein cages[J]. Langmuir, 2017, 33(23): 5925-5931.
|
10 |
CHOI Yoojin, PARK Tae Jung, LEE Doh C, et al. Recombinant Escherichia coli as a biofactory for various single- and multi-element nanomaterials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(23): 5944-5949.
|
11 |
IRAVANI S, VARMA R S. Biofactories: Engineered nanoparticles via genetically engineered organisms[J]. Green Chemistry, 2019, 21(17): 4583-4603.
|
12 |
YANG Chenhui, ASLAN, Husnu, ZHANG Peng, et al. Carbon dots-fed Shewanella oneidensis MR-1 for bioelectricity enhancement[J]. Nature Communications, 2020, 11(1): 1379.
|
13 |
XIAO Xiang, MA Xiaobo, YUAN Hang, et al. Photocatalytic properties of zinc sulfide nanocrystals biofabricated by metal-reducing bacterium Shewanella oneidensis MR-1[J]. Journal of Hazardous Materials, 2015, 288: 134-139.
|
14 |
CAI Junkai, ZHAO Liang, WEI Jianwei, et al. Negatively charged metal-organic hosts with cobalt dithiolene species: Improving PET processes for light-driven proton reduction through host-guest electrostatic interactions[J]. Chemical Communications, 2019, 55(59): 8524-8527.
|
15 |
BEGHAIN J, A-C LANGLOIS, LEGRAND E, et al. Plasmodium copy number variation scan: Gene copy numbers evaluation in haploid genomes[J]. Malaria Journal, 2016, 15: 206.
|
16 |
YANG Xiande, YANG Yuxiao, WANG Boyou, et al. Synthesis and photocatalytic property of cubic phase CdS[J]. Solid State Sciences, 2019, 92: 31-35.
|
17 |
NANDI P, DAS D. ZnO/CdS/CuS heterostructure: A suitable candidate for applications in visible-light photocatalysis[J]. Journal of Physics and Chemistry of Solids, 2022, 160: 10.
|
18 |
LAN Kin-Tak, HSIAO Yu-Jen, JI Liangwen, et al. High-sensitive ultraviolet photodetectors based on ZnO nanorods/CdS heterostructures[J]. Nanoscale Research Letters, 2017, 12(1): 31.
|
19 |
WENG Yu-Ching, CHANG Hao. Screening and characterization for the optimization of CdS-based photocatalysts[J]. Rsc Advances, 2016, 6(47): 41376-41384.
|
20 |
ZHAO Yi, LU Yongfang., Lu CHEN, et al. Redox dual-cocatalyst-modified CdS double-heterojunction photocatalysts for efficient hydrogen production[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46073-46083.
|
21 |
CHANG Xueting, LI Zhongliang, ZHAI Xinxin, et al. Efficient synthesis of sunlight-driven ZnO-based heterogeneous photocatalysts[J]. Materials & Design, 2016, 98: 324-332.
|
22 |
MEYER R L, ZHOU X F, TANG L, et al. Immobilisation of living bacteria for AFM imaging under physiological conditions[J]. Ultramicroscopy, 2010, 110(11): 1349-1357.
|
23 |
RAJESWARI A, VISMAIYA S, PIUS A. Preparation, characterization of nano ZnO-blended cellulose acetate-polyurethane membrane for photocatalytic degradation of dyes from water[J]. Chemical Engineering Journal, 2017, 313: 928-937.
|
24 |
FENG Yinchang, LI Lei, LI Junwei, et al. Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene[J]. Journal of Hazardous Materials, 2011, 192(2): 538-544.
|
25 |
KANAGARAJ T, THIRIPURANTHAGAN S. Photocatalytic activities of novel SrTiO3-BiOBr heterojunction catalysts towards the degradation of reactive dyes[J]. Applied Catalysis B: Environmental, 2017, 207: 218-232.
|
26 |
MANZOOR S, MALANA M. A, ALSHAHRANI T, et al. Visible-light-driven zirconium oxide/cadmium sulfide nanocomposite for degradation of textile dyes[J]. International Journal of Environmental Science and Technology, 2022, 19(5): 4037-4046.
|
27 |
KAUSHIK J, HIMANSHI, KUMAR V, et al. Sunlight-promoted photodegradation of Congo red by cadmium-sulfide decorated graphene aerogel[J]. Chemosphere, 2022, 287: 132225.
|
28 |
LI Xiaojing, WANG Junfeng, ZHANG Jiayu, et al. Cadmium sulfide modified zinc oxide heterojunction harvesting ultrasonic mechanical energy for efficient decomposition of dye wastewater[J]. Journal of Colloid and Interface Science, 2022, 607: 412-422.
|
29 |
ZHU Huayue, JIANG Ru, XIAO Ling, et al. Photocatalytic decolorization and degradation of Congo red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 933-940.
|
30 |
SOLTANINEJAD V, AHGHARI M R, TAHERI-LEDARI R, et al. A versatile nanocomposite made of Cd/Cu, chlorophyll and PVA matrix utilized for photocatalytic degradation of the hazardous chemicals and pathogens for wastewater treatment[J]. Journal of Molecular Structure, 2022, 1256: 132456.
|
31 |
Wan-Kuen JO, KUMER S, ISAACS M. A, et al. Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo red[J]. Applied Catalysis B: Environmental, 2017, 201: 159-168.
|
32 |
TIAN Jiangyang, SHAO Qian, ZHAO Junkai, et al. Microwave solvothermal carboxymethyl chitosan templated synthesis of TiO2/ZrO2 composites toward enhanced photocatalytic degradation of Rhodamine B[J]. Journal of Colloid and Interface Science, 2019, 541: 18-29.
|
33 |
LIU Jinrun, LI Jiadong, WEI Feng, et al. Ag-ZnO submicrometer rod arrays for high-efficiency photocatalytic degradation of Congo red and disinfection[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11258-11266.
|
34 |
DU Jimin, YANG Mengke, ZHANG Fangfang, et al. Enhanced charge separation of CuS and CdS quantum-dot-cosensitized porous TiO2-based photoanodes for photoelectrochemical water splitting[J]. Ceramics International, 2018, 44(3): 3099-3106.
|
35 |
ZHONG Wenzhou, QIAO Tao, DAI Jing, et al. Visible-light-responsive sulfated vanadium-doped TS-1 with hollow structure: Enhanced photocatalytic activity in selective oxidation of cyclohexane[J]. Journal of Catalysis, 2015, 330: 208-221.
|
36 |
WU Qiangshun, WANG Huijuan, JIA Yuanyuan, et al. Kinetics of the Acid orange 7 degradation in the photocatalytic system of UV/H2O2/TS-1[J]. Journal of Water Process Engineering, 2017, 19: 106-111.
|
37 |
ZHANG Lina, XU Meiling, GAO Chaomin, et al. Ultrasensitive photoelectrochemical sensor enabled by a target-induced signal quencher release strategy[J]. New Journal of Chemistry, 2020, 44(32): 13882-13888.
|
38 |
ZU Fanlin, YAN Fanyong, BAI Zhangjun, et al. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications[J]. Microchimica Acta, 2017, 184(7): 1899-1914.
|
39 |
MENG Aiyun, ZHU Bicheng, ZHONG Bo, et al. Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity[J]. Applied Surface Science, 2017, 422: 518-527.
|
40 |
LI Xin, ZHU Bicheng, Jingxiang LOW, et al. Engineering heterogeneous semiconductors for solar water splitting[J]. Journal of Materials Chemistry A, 2015, 3(6): 2485-2534.
|