化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1298-1308.DOI: 10.16085/j.issn.1000-6613.2021-2028
收稿日期:
2021-09-27
修回日期:
2021-12-17
出版日期:
2022-03-23
发布日期:
2022-03-28
通讯作者:
詹国武
作者简介:
李雯(1988—),女,博士,研究方向为CO2资源化利用。E-mail:基金资助:
LI Wen1(), ZHAN Guowu2(
), HUANG Jiale3, LI Qingbiao3
Received:
2021-09-27
Revised:
2021-12-17
Online:
2022-03-23
Published:
2022-03-28
Contact:
ZHAN Guowu
摘要:
CO2过量排放导致全球气候异常,通过CO2催化加氢将CO2转化为具有高附加值的基础化学品或燃料是实现碳循环的有效方式,同时也有助于实现我国的“碳中和”目标。本文报道了基于稻谷壳前体制备具有多层次、相互贯通的介孔及大孔结构的bio-SAPO-34分子筛,该结构有利于反应过程中反应中间体的传质。本文系统地研究了分子筛前体液浓度、微孔导向剂种类及浓度、生物模板加入量等因素对bio-SAPO-34合成过程中维持生物模板分级结构的影响规律。将bio-SAPO-34与ZnZrO x 固溶体氧化物组装构筑ZnZrO x &bio-SAPO-34双功能催化剂用于催化CO2加氢制备低碳烯烃反应。在380℃、3MPa的反应条件下,双功能催化剂的CO2转化率为11.8%,低碳烯烃的选择性为66.4%(占烃类产物),且经过连续反应60h后未发现催化剂明显失活。
中图分类号:
李雯, 詹国武, 黄加乐, 李清彪. 基于金属有机骨架和稻谷壳前体构筑ZnZrO x &bio-SAPO-34双功能催化剂及CO2加氢制低碳烯烃[J]. 化工进展, 2022, 41(3): 1298-1308.
LI Wen, ZHAN Guowu, HUANG Jiale, LI Qingbiao. Synthesis of ZnZrO x &bio-SAPO-34 bifunctional catalysts derived from metal organic frameworks and rice husk template for CO2 hydrogenation to light olefins[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1298-1308.
图9 双功能催化剂中金属氧化物和分子筛的亲密度研究a—单独ZnZrO x 床层;b—ZnZrO x 与bio-SAPO-34上下双床层叠放;c—ZnZrO x 与bio-SAPO-34及石英砂三者研磨混合;d—ZnZrO x 与bio-SAPO-34粉末通过研钵研磨混合;e—ZnZrO x 与bio-SAPO-34研磨压片混合
32 | LI W, WANG K C, HUANG J J, et al. M x O y -ZrO2 (M = Zn, Co, Cu) solid solutions derived from schiff base-bridged UiO-66 composites as high-performance catalysts for CO2 hydrogenation[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33263-33272. |
33 | LI G, WANG B D, SUN Q, et al. Novel synthesis of fly-ash-derived Cu-loaded SAPO-34 catalysts and their use in selective catalytic reduction of NO with NH3 [J]. Green Energy & Environment, 2019, 4(4): 470-482. |
34 | CHEN J Y, WANG X, WU D K, et al. Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-)SAPO-34 catalysts: strategy for product distribution[J]. Fuel, 2019, 239: 44-52. |
35 | BAKHTIAR S U H, ALI S, DONG Y L, et al. Selective synthesis of the SAPO-5 and SAPO-34 mixed phases by controlling Si/Al ratio and their excellent catalytic methanol to olefins performance[J]. Journal of Porous Materials, 2018, 25(5): 1455-1461. |
36 | RAVI M, SUSHKEVICH V L, BOKHOVEN J A VAN. Towards a better understanding of Lewis acidic aluminium in zeolites[J]. Nature Materials, 2020, 19(10): 1047-1056. |
37 | DAI W L, WANG X, WU G J, et al. Methanol-to-olefin conversion on silicoaluminophosphate catalysts: effect of Brønsted acid sites and framework structures[J]. ACS Catalysis, 2011, 1(4): 292-299. |
38 | DAI W L, SCHEIBE M, GUAN N J, et al. Fate of Brønsted acid sites and benzene-based carbenium ions during methanol-to-olefin conversion on SAPO-34[J]. ChemCatChem, 2011, 3(7): 1130-1133. |
39 | CHEN J R, LI J Z, YUAN C Y, et al. Elucidating the olefin formation mechanism in the methanol to olefin reaction over AlPO-18 and SAPO-18[J]. Catalysis Science & Technology, 2014, 4(9): 3268. |
40 | WANG M H, WANG Z W, LIU S H, et al. Synthesis of hierarchical SAPO-34 to improve the catalytic performance of bifunctional catalysts for syngas-to-olefins reactions[J]. Journal of Catalysis, 2021, 394: 181-192. |
41 | WANG M H, KANG J C, XIONG X W, et al. Effect of zeolite topology on the hydrocarbon distribution over bifunctional ZnAlO/SAPO catalysts in syngas conversion[J]. Catalysis Today, 2021, 371: 85-92. |
42 | WESTGÅRD ERICHSEN M, SVELLE S, OLSBYE U. The influence of catalyst acid strength on the methanol to hydrocarbons (MTH) reaction[J]. Catalysis Today, 2013, 215: 216-223. |
43 | YE R P, DING J, GONG W B, et al. CO2 hydrogenation to high-value products via heterogeneous catalysis[J]. Nature Communications, 2019, 10(1): 5698. |
1 | GOUD D, GUPTA R, MALIGAL-GANESH R, et al. Review of catalyst design and mechanistic studies for the production of olefins from anthropogenic CO2 [J]. ACS Catalysis, 2020, 10(23): 14258-14282. |
2 | ARESTA M, DIBENEDETTO A, ANGELINI A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2 [J]. Chemical Reviews, 2014, 114(3): 1709-1742. |
44 | CHENG K, ZHOU W, KANG J C, et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem., 2017, 3(2): 334-347. |
45 | WANG J Y, ZHANG A F, JIANG X, et al. Highly selective conversion of CO2 to lower hydrocarbons (C2-C4) over bifunctional catalysts composed of In2O3-ZrO2 and zeolite[J]. Journal of CO2 Utilization, 2018, 27: 81-88. |
46 | ZHOU W, CHENG K, KANG J, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48(12): 3193-3228. |
47 | WANG Y, TAN L, TAN M H, et al. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics[J]. ACS Catalysis, 2019, 9(2): 895-901. |
48 | WANG S, ZHANG L, ZHANG W Y, et al. Selective conversion of CO2 into propene and butene[J]. Chem, 2020, 6(12): 3344-3363. |
49 | LI Z L, QU Y Z, WANG J J, et al. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts[J]. Joule, 2019, 3(2): 570-583. |
50 | LI Z L, WANG J J, QU Y Z, et al. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catalysis, 2017, 7(12): 8544-8548. |
51 | WANG Y H, WANG G Y, VAN DER WAL L I, et al. Visualizing element migration over bifunctional metal-zeolite catalysts and its impact on catalysis[J]. Angewandte Chemie International Edition, 2021, 60(32): 17735-17743. |
3 | ALVAREZ A, BANSODE A, URAKAWA A, et al. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes[J]. Chemical Reviews, 2017, 117(14): 9804-9838. |
4 | MA Z Q, POROSOFF M D. Development of tandem catalysts for CO2 hydrogenation to olefins[J]. ACS Catalysis, 2019, 9(3): 2639-2656. |
5 | 成康, 张庆红, 康金灿, 等. 二氧化碳直接制备高值化学品中的接力催化方法[J]. 中国科学: 化学, 2020, 50(7): 743-755. |
CHENG K, ZHANG Q H, KANG J C, et al. Relay catalysis in the direct conversion of carbon dioxide to high-value chemicals[J]. Scientia Sinica (Chimica),2020, 50(7): 743-755. | |
6 | LIU X L, WANG M H, YIN H R, et al. Tandem catalysis for hydrogenation of CO and CO2 to lower Olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J]. ACS Catalysis, 2020, 10(15): 8303-8314. |
7 | CHENG K, GU B, LIU X L, et al. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angewandte Chemie International Edition, 2016, 55(15): 4725-4728. |
8 | JIAO F, LI J, PAN X, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. |
9 | YANG H Y, ZHANG C, GAO P, et al. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons[J]. Catalysis Science & Technology, 2017, 7(20): 4580-4598. |
10 | DANG S S, GAO P, LIU Z Y, et al. Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts[J]. Journal of Catalysis, 2018, 364: 382-393. |
11 | WANG C M, WANG Y D, XIE Z K. Insights into the reaction mechanism of methanol-to-olefins conversion in HSAPO-34 from first principles: are olefins themselves the dominating hydrocarbon pool species?[J]. Journal of Catalysis, 2013, 301: 8-19. |
12 | SUN Q M, WANG N, GUO G Q, et al. Synthesis of tri-level hierarchical SAPO-34 zeolite with intracrystalline micro-meso-macroporosity showing superior MTO performance[J]. Journal of Materials Chemistry A, 2015, 3(39): 19783-19789. |
13 | ZHANG Q, YU J H, CORMA A. Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities[J]. Advanced Materials, 2020, 32(44): 2002927. |
14 | TIAN C C, ZHU X, ABNEY C W, et al. Toward the design of a hierarchical perovskite support: ultra-sintering-resistant gold nanocatalysts for CO oxidation[J]. ACS Catalysis, 2017, 7(5): 3388-3393. |
15 | RUTKOWSKA M, MACINA D, MIROCHA-KUBIEŃ N, et al. Hierarchically structured ZSM-5 obtained by desilication as new catalyst for DME synthesis from methanol[J]. Applied Catalysis B: Environmental, 2015, 174/175: 336-343. |
16 | ZHAO B, ZHAI P, WANG P F, et al. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts[J]. Chem, 2017, 3(2): 323-333. |
17 | BAI R S, SONG Y, LI Y, et al. Creating hierarchical pores in zeolite catalysts[J]. Trends in Chemistry, 2019, 1(6): 601-611. |
18 | ZHOU H, XU J, LIU X H, et al. Bio-inspired photonic materials: prototypes and structural effect designs for applications in solar energy manipulation[J]. Advanced Functional Materials, 2018, 28(24): 1705309. |
19 | 姜霞,李雯,郭云龙,等. 生物模板法制备金属氧化物及其催化应用研究进展[J]. 化工进展, 2019, 38(1): 485-494. |
JIANG X, LI W, GUO Y L, et al. Progress on bio-templated synthesis of metal oxides and their catalytic applications[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 485-494. | |
20 | GOODWIN W B, SHIN D, SABO D, et al. Tunable multimodal adhesion of 3D, nanocrystalline CoFe2O4 pollen replicas[J]. Bioinspiration & Biomimetics, 2017, 12(6): 066009. |
21 | CHEN L, TANG X W, XIE P W, et al. 3D printing of artificial leaf with tunable hierarchical porosity for CO2 photoreduction[J]. Chemistry of Materials, 2018, 30(3): 799-806. |
22 | ANDERSON M W, HOLMES S M, HANIF N, et al. Hierarchical pore structures through diatom zeolitization[J]. Angewandte Chemie International Edition, 2000, 39(15): 2707-2710. |
23 | LIU X, ZHAN G W, WU J Y, et al. Preparation of integrated CuO/ZnO/OS nanocatalysts by using acid-etched oyster shells as a support for CO2 hydrogenation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7162-7173. |
24 | JIANG X, LIU Y, HAO H J, et al. Rape pollen-templated synthesis of C,N self-doped hierarchical TiO2 for selective hydrogenation of 1,3-butadiene[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 882-888. |
25 | GUO Y L, YANG D P, LIU M H, et al. Enhanced catalytic benzene oxidation over a novel waste-derived Ag/eggshell catalyst[J]. Journal of Materials Chemistry A, 2019, 7(15): 8832-8844. |
26 | 钱俊青. 稻谷壳的深加工技术[J]. 中国商办工业, 2001, 13(1): 44-46. |
QIAN J Q. Deep processing technology of rice husk[J]. China Commercial Industry, 2001, 13(1): 44-46. | |
27 | LIOU T H. Preparation and characterization of nano-structured silica from rice husk[J]. Materials Science and Engineering: A, 2004, 364(1/2): 313-323. |
28 | YELETSKY P M, YAKOVLEV V A, MEL’GUNOV M S, et al. Synthesis of mesoporous carbons by leaching out natural silica templates of rice husk[J]. Microporous and Mesoporous Materials, 2009, 121(1/2/3): 34-40. |
29 | LIANG Y R, YANG C, DONG H W, et al. Facile synthesis of highly porous carbon from rice husk[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7111-7117. |
30 | YANG D L, DU B, YAN Y X, et al. Rice-husk-templated hierarchical porous TiO2/SiO2 for enhanced bacterial removal[J]. ACS Applied Materials & Interfaces, 2014, 6(4): 2377-2385. |
31 | PASTOR A, BALBUENA J, CRUZ-YUSTA M, et al. ZnO on rice husk: a sustainable photocatalyst for urban air purification[J]. Chemical Engineering Journal, 2019, 368: 659-667. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[7] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[8] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[9] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[10] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[11] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[12] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[13] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[14] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[15] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 176
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 342
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |