化工进展 ›› 2022, Vol. 41 ›› Issue (2): 791-802.DOI: 10.16085/j.issn.1000-6613.2021-0487
唐金琼1,2(), 孔勇1,2,3(), 沈晓冬1,2,3()
收稿日期:
2021-03-09
修回日期:
2021-08-15
出版日期:
2022-02-05
发布日期:
2022-02-23
通讯作者:
孔勇,沈晓冬
作者简介:
唐金琼(1998—),女,硕士研究生,研究方向为碳基气凝胶材料。E-mail:TANG Jinqiong1,2(), KONG Yong1,2,3(), SHEN Xiaodong1,2,3()
Received:
2021-03-09
Revised:
2021-08-15
Online:
2022-02-05
Published:
2022-02-23
Contact:
KONG Yong,SHEN Xiaodong
摘要:
碳化物衍生碳(CDC)是除去碳化物中非碳元素后得到的产物,本文综述了卤素刻蚀法、超临界水热法、酸浸泡法、碳化钙反应法、高温热解法、高温熔盐电化学刻蚀法六种制备方法,其中,氯气刻蚀法效率最高。文中指出:CDC因具有轻质、高孔隙率、孔径可调、高比表面积、碳形态多样、生物相容性好等优势,可用于电化学储能(如超级电容器、锂离子电池、燃料电池)、吸附、生物医药和摩擦学领域中;而影响CDC孔结构的因素有很多,如前体类型、反应温度、反应气氛、反应时间、刻蚀方式以及活化方式。通过选择不同的合成参数,可以制备出满足不同应用场景需求的CDC材料。本文还展望了CDC在未来实现商业化的可能性及需要满足的五点要求。
中图分类号:
唐金琼, 孔勇, 沈晓冬. 碳化物衍生碳的制备及其应用研究进展[J]. 化工进展, 2022, 41(2): 791-802.
TANG Jinqiong, KONG Yong, SHEN Xiaodong. Advances in the synthesis and application of the carbide-derived carbons[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 791-802.
1 | PRESSER V, HEON M, GOGOTSI Y. Carbide-derived carbons-from porous networks to nanotubes and graphene[J]. Advanced Functional Materials, 2011, 21(5): 810-833. |
2 | NAHEED L, KOPPEL M, PAALO M, et al. Hydrogen adsorption properties of carbide-derived carbons at ambient temperature and high pressure[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15761-15772. |
3 | ALMANASSRA I W, KOCHKODAN V, PONNUSAMY G, et al. Carbide derived carbon (CDC) as novel adsorbent for ibuprofen removal from synthetic water and treated sewage effluent[J]. Journal of Environmental Health Science and Engineering, 2020, 18(2): 1375-1390. |
4 | CHENG K Y, NARGARAJ R, BIJUKUMAR D, et al. Improvement of tribocorrosion behavior on titanium alloy by carbide-derived carbon (CDC)[J]. Surface and Coatings Technology, 2020, 392: 125692. |
5 | LILLOJA J, KIBENA-PÕLDSEPP E, SARAPUU A, et al. Nitrogen-doped carbide-derived carbon/carbon nanotube composites as cathode catalysts for anion exchange membrane fuel cell application[J]. Applied Catalysis B: Environmental, 2020, 272: 119012. |
6 | HOFFMAN E N, YUSHIN G, BARSOUM M W, et al. Synthesis of carbide-derived carbon by chlorination of Ti2AlC[J]. Chemistry of Materials, 2005, 17(9): 2317-2322. |
7 | XU J, ZHANG R J, CHEN P, et al. Mechanism of formation and electrochemical performance of carbide-derived carbons obtained from different carbides[J]. Carbon, 2013, 64: 444-455. |
8 | HEIDARPOUR A, AGHAMOHAMMADI H, GHASEMI S. Structural and morphological characterization of the layered carbide-derived-carbon nanostructures obtained by HF etching of Ti2AlC[J]. Synthetic Metals, 2020, 267: 116478. |
9 | 贾进, 杨晓阳, 闫艳, 等. 碳化物衍生碳的制备及其在气体存储与超级电容器领域的应用研究进展[J]. 化工进展, 2014, 33(10): 2681-2686. |
JIA Jin, YANG Xiaoyang, YAN Yan, et al. Progress of preparation of carbide-derived carbon and application in gas storage and supercapacitors[J]. Chemical Industry and Engineering Progress, 2014, 33(10): 2681-2686. | |
10 | HOFFMAN E N, YUSHIN G, EL-RAGHY T, et al. Micro and mesoporosity of carbon derived from ternary and binary metal carbides[J]. Microporous and Mesoporous Materials, 2008, 112(1/2/3): 526-532. |
11 | ZHU Y Y, ZHOU A G, JIA J, et al. Synthesis and gas adsorption properties of carbide-derived carbons from titanium tin carbide[J]. Nano, 2016, 11(4): 1650040. |
12 | 徐江. 碳化物衍生碳的形成机理及其超级电容性能研究[D]. 秦皇岛: 燕山大学, 2015. |
XU Jiang. Mechanism of formation and supercapacitive performance of carbide-derived carbon[D]. Qinhuangdao: Yanshan University, 2015. | |
13 | 张静. HCl辅助Cl2刻蚀SiC和WC制备碳化物衍生碳的工艺及机理[D]. 南昌: 南昌大学, 2016. |
ZHANG Jing. Preparation technology and mechanism of carbide-derived carbon by HCl-assisted Cl2 etching SiC and WC[D]. Nanchang: Nanchang University, 2016. | |
14 | BATISSE N, GUÉRIN K, DUBOIS M, et al. Fluorination of silicon carbide thin films using pure F2 gas or XeF2[J]. Thin Solid Films, 2010, 518(23): 6746-6751. |
15 | BATISSE N, GUÉRIN K, DUBOIS M, et al. The synthesis of microporous carbon by the fluorination of titanium carbide[J]. Carbon, 2011, 49(9): 2998-3009. |
16 | GHIMBEU M C, GUERIN K, DUBOIS M, et al. Insights on the reactivity of ordered porous carbons exposed to different fluorinating agents and conditions[J]. Carbon, 2015, 84: 567-583. |
17 | CHRISTIANS H, BRUNNENGRÄBER K, GLÄSEL J, et al. Mesoporous and crystalline carbide-derived carbons: towards a general correlation on synthesis temperature and precursor structure influence[J]. Carbon, 2021, 175: 215-222. |
18 | JACOBSON N S, GOGOTSI Y G, YOSHIMURA M. Thermodynamic and experimental study of carbon formation on carbides under hydrothermal conditions[J]. Journal of Materials Chemistry, 1995, 5(4): 595. |
19 | KRAFT T, NICKEL K G. Carbon formed by hydrothermal treatment of α-SiC crystals[J]. Journal of Materials Chemistry, 2000, 10(3): 671-680. |
20 | KRAFT T, NICKEL K G, GOGOTSI Y G. Hydrothermal degradation of chemical vapour deposited SiC fibres[J]. Journal of Materials Science, 1998, 33(17): 4357-4364. |
21 | ZHANG H B, PRESSER V, BERTHOLD C, et al. Mechanisms and kinetics of the hydrothermal oxidation of bulk titanium silicon carbide[J]. Journal of the American Ceramic Society, 2010, 93(4): 1148-1155. |
22 | ZHANG H B, PRESSER V, NICKEL K G, et al. Hydrothermal oxidation behavior of bulk titanium aluminum carbide[J]. Journal of the American Ceramic Society, 2011, 94(10): 3460-3466. |
23 | LINCK C, IONESCU E, PAPENDORF B, et al. Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions[J]. International Journal of Materials Research, 2012, 103(1): 31-39. |
24 | XI J Q, LIU C, MORGAN D, et al. Deciphering water-solid reactions during hydrothermal corrosion of SiC[J]. Acta Materialia, 2021, 209: 116803. |
25 | SUN W, SHAH S A, CHEN Y, et al. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution[J]. J. Mater. Chem. A, 2017, 5(41): 21663-21668. |
26 | DAI C L, WANG X Y, WANG Y, et al. Synthesis of nanostructured carbon by chlorination of calcium carbide at moderate temperatures and its performance evaluation[J]. Materials Chemistry and Physics, 2008, 112(2): 461-465. |
27 | ZHANG K, TAO S J, XU X B, et al. Preparation of mesoporous carbon materials through mechanochemical reaction of calcium carbide and transition metal chlorides[J]. Industrial & Engineering Chemistry Research, 2018, 57(18): 6180-6188. |
28 | ZHU H L, BAI Y J, QI Y X, et al. Large-scale synthesis of hollow highly-graphitic carbon nanospheres by the reaction of AlCl3·6H2O with CaC2[J]. Carbon, 2012, 50(5): 1871-1878. |
29 | HAN F D, YAO B, BAI Y J. Preparation of carbon nano-onions and their application as anode materials for rechargeable lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2011, 115(18): 8923-8927. |
30 | HE R, WANG Z Y, JIN X B. Preparation of graphitic carbon nanosheets by reaction between CO2 and CaC2 for lithium-ion batteries[J]. Carbon, 2017, 116: 246-254. |
31 | LI T, BAI X, GULZAR U, et al. Facile synthesis of highly graphitized carbon via reaction of CaC2 with sulfur and its application for lithium/sodium-ion batteries[J]. ACS Omega, 2019, 4(5): 8312-8317. |
32 | GUO M, CHEN X C, ZHANG X, et al. Molten alkaline synthesis of highly porous carbon from calcium carbide[J]. Microporous and Mesoporous Materials, 2019, 278: 397-402. |
33 | XIE Y G, HUANG Q Z, HUANG B Y. Preparation of high purity carbon nanospheres by the chemical reaction of calcium carbide and oxalic acid[J]. Carbon, 2009, 47(9): 2292-2295. |
34 | LI Q D, LI Y, CHEN Y, et al. Synthesis of γ-graphyne by mechanochemistry and its electronic structure[J]. Carbon, 2018, 136: 248-254. |
35 | ZHAO B X, SONG C S, WANG F, et al. Facile synthesis of microporous N-doped carbon material and its application in supercapacitor[J]. Microporous and Mesoporous Materials, 2020, 306: 110483. |
36 | BADAMI D V. X-Ray studies of graphite formed by decomposing silicon carbide[J]. Carbon, 1965, 3(1): 53-57. |
37 | NORIMATSU W, HIRATA K, YAMAMOTO Y, et al. Epitaxial growth of boron-doped graphene by thermal decomposition of B4C[J]. Journal of Physics: Condensed Matter, 2012, 24(31): 314207. |
38 | 刘威. 熔盐电解碳素铁合金制备纯净铁合金及碳化物衍生碳研究[D]. 马鞍山: 安徽工业大学, 2017. |
LIU Wei. Study on preparation of pure ferroalloy and carbide derived carbon by the electrolysis of high carbon ferroalloy in molten salts[D]. Ma’anshan: Anhui Universit of Technology, 2017. | |
39 | PANG Z Y, ZOU X L, TANG W, et al. Electrosynthesis of Ti3AlC2-derived porous carbon in molten salt[J]. JOM, 2020, 72(11): 3887-3894. |
40 | PANG Z Y, LI G S, ZOU X L, et al. An integrated strategy towards the facile synthesis of core-shell SiC-derived carbon@N-doped carbon for high-performance supercapacitors[J]. Journal of Energy Chemistry, 2021, 56: 512-521. |
41 | 郑凯. 熔盐电解-刻蚀制备碳基材料新技术[D]. 上海: 上海大学, 2018. |
ZHENG Kai. A new process for preparing and etching of carbon-based materials in molten salt[D]. Shanghai: Shanghai University, 2018. | |
42 | MALMBERG S, ARULEPP M, SAVEST N, et al. Directly electrospun electrodes for electrical double-layer capacitors from carbide-derived carbon[J]. Journal of Electrostatics, 2020, 103: 103396. |
43 | YEON S H, JUNG K N, YOON S, et al. Electrochemical performance of carbide-derived carbon anodes for lithium-ion batteries[J]. Journal of Physics and Chemistry of Solids, 2013, 74(7): 1045-1055. |
44 | HASSE B, GLÄSEL J, KERN A M, et al. Preparation of carbide-derived carbon supported platinum catalysts[J]. Catalysis Today, 2015, 249: 30-37. |
45 | KRÜNER B, ODENWALD C, TOLOSA A, et al. Carbide-derived carbon beads with tunable nanopores from continuously produced polysilsesquioxanes for supercapacitor electrodes[J]. Sustainable Energy & Fuels, 2017, 1(7): 1588-1600. |
46 | TEE E, TALLO I, THOMBERG T, et al. Steam and carbon dioxide co-activated silicon carbide-derived carbons for high power density electrical double layer capacitors[J]. Journal of the Electrochemical Society, 2018, 165(10): A2357-A2364. |
47 | CHMIOLA J. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313(5794): 1760-1763. |
48 | NAZIR G, REHMAN A, PARK S J. Sustainable N-doped hierarchical porous carbons as efficient CO2 adsorbents and high-performance supercapacitor electrodes[J]. Journal of CO2 Utilization, 2020, 42: 101326. |
49 | YAN P T, YAN L, ZHAO S M, et al. Fluorine-doped graphene/nanosized carbide-derived carbon composites for high-performance supercapacitor[J]. Nano, 2019, 14(8): 1950099. |
50 | GHOSH S, BARG S, JEONG S M, et al. Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors[J]. Advanced Energy Materials, 2020, 10(32): 2001239. |
51 | ZERA E, NICKEL W, HAO G P, et al. Nitrogen doped carbide derived carbon aerogels by chlorine etching of a SiCN aerogel[J]. Journal of Materials Chemistry A, 2016, 4(12): 4525-4533. |
52 | PAN J M, SUN H Y, YAN X H, et al. Cube Fe3O4 nanoparticles embedded in three-dimensional net porous carbon from silicon oxycarbide for high performance supercapacitor[J]. Ceramics International, 2020, 46(16): 24805-24815. |
53 | LU C, ZHANG Y S, HU Y X, et al. Ultrafine Mo2C nanoparticles supported on three-dimensional hierarchical porous carbon architecture toward electrochemical energy storage applications[J]. Journal of Energy Storage, 2021, 33: 101855. |
54 | SUN H Y, PAN J M, YAN X H, et al. MnO2 nanoneedles loaded on silicon oxycarbide-derived hierarchically porous carbon for supercapacitor electrodes with enhanced electrochemical performance[J]. Ceramics International, 2019, 45(18): 24802-24810. |
55 | ZHAN C, JIANG D E. Understanding the pseudocapacitance of RuO2 from joint density functional theory[J]. Journal of Physics Condensed Matter, 2016, 28(46): 464004. |
56 | ZHENG L P, WANG Y, WANG X Y, et al. The preparation and performance of calcium carbide-derived carbon/polyaniline composite electrode material for supercapacitors[J]. Journal of Power Sources, 2010, 195(6): 1747-1752. |
57 | ZHENG Liping, WANG Xianyou. Application of carbide-derived carbon and conducting polymer composites for supercapacitors[J]. Chemistry, 2011, 74(11): 1013. |
58 | GHALY H A, EL-DEEN A G, SOUAYA E R, et al. Asymmetric supercapacitors based on 3D graphene-wrapped V2O5 nanospheres and Fe3O4@3D graphene electrodes with high power and energy densities[J]. Electrochimica Acta, 2019, 310: 58-69. |
59 | GU Y, LIU K, ZHANG X S, et al. Huge enhancement in electrochemical performance of nano carbide-derived carbon obtained by simply room-temperature soaking treatment in HF and HNO3 mixed solution[J]. Journal of Porous Materials, 2019, 26(5): 1241-1248. |
60 | QIAN H, KUCERNAK A R, GREENHALGH E S, et al. Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric[J]. ACS Applied Materials & Interfaces, 2013, 5(13): 6113-6122. |
61 | Öznil BUDAK, GEIßLER M, BECKER D, et al. Carbide-derived niobium pentoxide with enhanced charge storage capacity for use as a lithium-ion battery electrode[J]. ACS Applied Energy Materials, 2020, 3(5): 4275-4285. |
62 | YEON S H, YOON H, LEE S H, et al. Enhanced anode performance of micro/meso-porous reduced graphene oxide prepared from carbide-derived carbon for energy storage devices[J]. Carbon, 2015, 91: 241-251. |
63 | THIEME S, BRÜCKNER J, MEIER A, et al. A lithium-sulfur full cell with ultralong cycle life: influence of cathode structure and polysulfide additive[J]. Journal of Materials Chemistry A, 2015, 3(7): 3808-3820. |
64 | WEI Y J, TAO Y Q, ZHANG C F, et al. Layered carbide-derived carbon with hierarchically porous structure for high rate lithium-sulfur batteries[J]. Electrochimica Acta, 2016, 188: 385-392. |
65 | OSCHATZ M, LEE J T, KIM H, et al. Micro- and mesoporous carbide-derived carbon prepared by a sacrificial template method in high performance lithium sulfur battery cathodes[J]. J. Mater. Chem. A, 2014, 2(41): 17649-17654. |
66 | ERSOY D A, MCNALLAN M J, GOGOTSI Y. Platinum reactions with carbon coatings produced by high temperature chlorination of silicon carbide[J]. Journal of the Electrochemical Society, 2001, 148(12): C774. |
67 | LÜSI M, ERIKSON H, SARAPUU A, et al. Electroreduction of oxygen on carbide-derived carbon supported Pd catalysts[J]. ChemElectroChem, 2020, 7(2): 546-554. |
68 | LUST E, HÄRK E, NERUT J, et al. Pt and Pt-Ru catalysts for polymer electrolyte fuel cells deposited onto carbide derived carbon supports[J]. Electrochimica Acta, 2013, 101: 130-141. |
69 | TEPPOR P, JÄGER R, HÄRK E, et al. Oxygen reduction reaction on nitrogen and cobalt modified silicon carbide derived carbon in acidic media[J]. ECS Transactions, 2018, 85(13): 855-863. |
70 | NOORI M T, VERMA N. Cobalt-iron phthalocyanine supported on carbide-derived carbon as an excellent oxygen reduction reaction catalyst for microbial fuel cells[J]. Electrochimica Acta, 2019, 298: 70-79. |
71 | PRAATS R, KÄÄRIK M, KIKAS A, et al. Electrocatalytic oxygen reduction reaction on iron phthalocyanine-modified carbide-derived carbon/carbon nanotube composite electrocatalysts[J]. Electrochimica Acta, 2020, 334: 135575. |
72 | LILLOJA J, KIBENA-PÕLDSEPP E, SARAPUU A, et al. Transition-metal- and nitrogen-doped carbide-derived carbon/carbon nanotube composites as cathode catalysts for anion-exchange membrane fuel cells[J]. ACS Catalysis, 2021, 11(4): 1920-1931. |
73 | KIRILIN A V, HASSE B, TOKAREV A V, et al. Aqueous-phase reforming of xylitol over Pt/C and Pt/TiC-CDC catalysts: catalyst characterization and catalytic performance[J]. Catal. Sci. Technol., 2014, 4(2): 387-401. |
74 | ZHOU Y H, LI X Y, PAN X L, et al. A highly active and stable Pd-TiO2/CDC-SiC catalyst for hydrogenation of 4-carboxybenzaldehyde[J]. Journal of Materials Chemistry, 2012, 22(28): 14155. |
75 | GLENK F, KNORR T, SCHIRMER M, et al. Synthesis of microporous carbon foams as catalyst supports[J]. Chemical Engineering & Technology, 2010, 33(4): 698-703. |
76 | KRAWIEC P, KOCKRICK E, BORCHARDT L, et al. Ordered mesoporous carbide derived carbons: novel materials for catalysis and adsorption[J]. The Journal of Physical Chemistry C, 2009, 113(18): 7755-7761. |
77 | 王红妍, 王宝冬, 李俊华, 等. 碳化物衍生碳及其在吸附领域中的应用研究进展[J]. 化工进展, 2018, 37(2): 637-643. |
WANG Hongyan, WANG Baodong, LI Junhua, et al. Research progress of carbide-derived carbon and its application in adsorption[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 637-643. | |
78 | 贾进. 碳化物衍生碳的制备及其气体存储性能的研究[D]. 焦作: 河南理工大学, 2015. |
JIA Jin. Progress of preparation of carbide-derived carbon and application in gas storage[D]. Jiaozuo: Henan Polytechnic University, 2015. | |
79 | DYJAK S, KICIŃSKI W, NOREK M, et al. Carbide-derived carbon obtained via bromination of titanium carbide: comparative analysis with chlorination and hydrogen storage studies[J]. Microporous and Mesoporous Materials, 2019, 273: 26-34. |
80 | TIAN M, LENNOX M J, O’MALLEY A J, et al. Effect of pore geometry on ultra-densified hydrogen in microporous carbons[J]. Carbon, 2021, 173: 968-979. |
81 | OSCHATZ M, BOUKHALFA S, NICKEL W, et al. Carbide-derived carbon aerogels with tunable pore structure as versatile electrode material in high power supercapacitors[J]. Carbon, 2017, 113: 283-291. |
82 | SEVILLA M, FERRERO G A, FUERTES A B. Nanoporous materials for gas storage: CO2 storage on nanoporous carbons[M]. Singapore: Springer Singapore, 2019: 287-330. |
83 | DUAN L Q, MA Q S, MA L J, et al. Effect of the CO2 activation parameters on the pore structure of silicon carbide-derived carbons[J]. New Carbon Materials, 2019, 34(4): 367-372. |
84 | YACHAMANENI S, YUSHIN G, YEON S H, et al. Mesoporous carbide-derived carbon for cytokine removal from blood plasma[J]. Biomaterials, 2010, 31(18): 4789-4794. |
85 | 姜晓露. 二硫化钼/氧化石墨烯和碳化物衍生碳对水中六价铬的吸附研究[D]. 广州: 华南理工大学, 2017. |
JIANG Xiaolu. Research on adsorption of hexavalent chromium from aqueous solutions onto MoS2/GO and CDC[D]. Guangzhou: South China University of Technology, 2017. | |
86 | WANG H Y, ZHU T L, FAN X, et al. Adsorption and desorption of small molecule volatile organic compounds over carbide-derived carbon[J]. Carbon, 2014, 67: 712-720. |
87 | CHUN Y S, LIM D S. Carbide derived carbon: from growth to tribological application[J]. Journal of the Ceramic Society of Japan, 2014, 122(1428): 577-585. |
88 | CARROLL B, GOGOTSI Y, KOVALCHENKO A, et al. Effect of humidity on the tribological properties of carbide-derived carbon (CDC) films on silicon carbide[J]. Tribology Letters, 2003, 15(1): 51-55. |
89 | 眭剑, 刘秀芳. 浸油碳化物衍生碳润滑涂层的承载机制研究[J]. 摩擦学学报, 2016, 36(6): 762-768. |
SUI Jian, LIU Xiufang. The load-carrying mechanism of the oil-impregnated carbide-derived carbon coatings[J]. Tribology, 2016, 36(6): 762-768. | |
90 | TLUSTOCHOWICZ M. Dependence of tribology of carbide derived carbon films on humidity[M]. Hoboken: John Wiley & Sons, Inc., 2012: 585-594. |
91 | HOLMBERG K, ERDEMIR A. Influence of tribology on global energy consumption, costs and emissions[J]. Friction, 2017, 5(3): 263-284. |
92 | Tagungsbericht TGA2016[J]. Medizinische Genetik, 2016, 28(2): 277-288. |
93 | ZONDAKA Z, KIVILO A, NAKSHATHARAN S, et al. Carbide-derived carbon and poly-3,4-ethylenedioxythiphene composite laminate: linear and bending actuation[J]. Synthetic Metals, 2018, 245: 67-73. |
94 | ZONDAKA Z, VALNER R, AABLOO A, et al. Embedded carbide-derived carbon (CDC) particles in polypyrrole (PPy) for linear actuator[C]//SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. Proc SPIE9798, Electroactive Polymer Actuators and Devices (EAPAD) 2016, Las Vegas, Nevada. 2016, 9798: 259-265. |
95 | YUSHIN G, HOFFMAN E N, BARSOUM M W, et al. Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines[J]. Biomaterials, 2006, 27(34): 5755-5762 |
[1] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[2] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[3] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[4] | 张巍, 秦川, 谢康, 周运河, 董梦瑶, 李婕, 汤云灏, 马英, 宋健. H2-SCR改性铂系催化剂低温脱硝的应用及性能强化挑战[J]. 化工进展, 2023, 42(6): 2954-2962. |
[5] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
[6] | 马源, 肖晴月, 岳君容, 崔彦斌, 刘姣, 许光文. CeO2-Al2O3复合载体负载Ni基催化剂催化CO x 共甲烷化性能[J]. 化工进展, 2023, 42(5): 2421-2428. |
[7] | 符淑瑢, 王丽娜, 王东伟, 刘蕊, 张晓慧, 马占伟. 析氧助催化剂增强光阳极光电催化分解水性能研究进展[J]. 化工进展, 2023, 42(5): 2353-2370. |
[8] | 王嘉, 彭冲, 唐磊, 陆安慧. 渣油加氢催化剂活性相结构调控及对反应性能影响[J]. 化工进展, 2023, 42(4): 1811-1821. |
[9] | 张会霞, 周立山, 张程蕾, 钱光磊, 谢陈鑫, 朱令之. Bi2S3/TiO2纳米锥光阳极的制备及其光电催化降解土霉素[J]. 化工进展, 2023, 42(10): 5548-5557. |
[10] | 刘亮, 王朝曦, 李鑫龙, 张高山, 王守阳, 张林林, 陆畅, 卿梦霞. 钒钛系脱硝催化剂抗硫酸氢铵中毒改进措施研究进展[J]. 化工进展, 2023, 42(1): 215-225. |
[11] | 顾旭波, 廖传华, 王常青. 超临界水氧化能量回收系统的设计优化[J]. 化工进展, 2022, 41(9): 5094-5102. |
[12] | 汪兴, 赵子龙, 张小山, 王宏杰, 董文艺, 陈慧慧. 制备条件对生物炭载铁催化剂催化破络Ni-EDTA性能及活性组分浸出的影响[J]. 化工进展, 2022, 41(9): 4831-4839. |
[13] | 曾军建, 赵基钢. 乙炔氢氯化金基无汞催化剂的研究进展[J]. 化工进展, 2022, 41(7): 3589-3596. |
[14] | 王亚楠, 孟秀霞, 张维民, 杨乃涛. 表/界面调控策略在氢/氧反应电极中的研究进展[J]. 化工进展, 2022, 41(5): 2416-2428. |
[15] | 薛李静, 费星, 刘江淋, 吴林军, 仇中杰, 许权洲, 钟晓文, 林绪亮, 秦延林. 木质素基碳材料催化剂的制备及应用研究进展[J]. 化工进展, 2022, 41(5): 2441-2450. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |