化工进展 ›› 2022, Vol. 41 ›› Issue (5): 2441-2450.DOI: 10.16085/j.issn.1000-6613.2021-1256
薛李静(), 费星, 刘江淋, 吴林军, 仇中杰, 许权洲, 钟晓文, 林绪亮(), 秦延林()
收稿日期:
2020-06-16
修回日期:
2021-08-25
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
林绪亮,秦延林
作者简介:
薛李静(1997—),女,硕士研究生,研究方向为木质素基碳材料的制备及应用。E-mail: 基金资助:
XUE Lijing(), FEI Xing, LIU Jianglin, WU Linjun, QIU Zhongjie, XU Quanzhou, ZHONG Xiaowen, LIN Xuliang(), QIN Yanlin()
Received:
2020-06-16
Revised:
2021-08-25
Online:
2022-05-05
Published:
2022-05-24
Contact:
LIN Xuliang,QIN Yanlin
摘要:
木质素具有三维网状苯环结构、来源丰富、含碳量高、官能团丰富可控等特点,是一种理想的碳材料前体。通过化学改性和微结构调控制备具有特殊功能的木质素基碳材料,其在能源催化转化、电化学储能和环境修复等领域应用广泛。本文介绍了木质素基碳材料催化剂的国内外最新研究进展,总结了木质素基碳材料催化剂的制备方法,重点综述了木质素基碳材料催化剂在氧化反应、氢解反应、酯化反应、水解反应、脱水反应、费托合成等热催化反应、电解水析氢和锌空气电池氧还原等电催化反应、有机污染物降解等光催化反应的研究进展,但如何构筑高效、稳定、廉价、可规模生产的木质素基碳材料催化剂仍然是一个具有挑战性的课题。文章总结:今后研究中应加强对木质素的基础化学结构和微结构调控、活性组分与木质素碳材料载体间的相互作用、木质素基碳材料催化剂在催化反应中的作用机理等的研究,更好地发挥其低成本、三维结构易成型和微结构可调控等优势,拓展木质素生物质资源的高值化利用领域。
中图分类号:
薛李静, 费星, 刘江淋, 吴林军, 仇中杰, 许权洲, 钟晓文, 林绪亮, 秦延林. 木质素基碳材料催化剂的制备及应用研究进展[J]. 化工进展, 2022, 41(5): 2441-2450.
XUE Lijing, FEI Xing, LIU Jianglin, WU Linjun, QIU Zhongjie, XU Quanzhou, ZHONG Xiaowen, LIN Xuliang, QIN Yanlin. Research progress on the preparation and application of lignin-based carbon catalysts[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2441-2450.
1 | 简雅婷, 余强, 陈小燕, 等. 木质素制备生物液体燃料进展[J]. 化工进展,2021, 40(S2): 109-116. |
JIAN Yating, YU Qiang, CHEN Xiaoyan, et al. Progress in the preparation of liquid biofuels from lignin[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 109-116. | |
2 | 黎演明, 李秉正, 杜芳黎, 等. 蔗渣碱法造纸黑液回收木质素的结构及其燃烧特性[J]. 化工学报, 2017, 68(1): 345-352. |
LI Yanming, LI Bingzheng, DU Fangli, et al. Structure and combustion characteristics of lignin from black liquor of bagasse soda pulping[J]. CIESC Journal, 2017, 68(1): 345-352. | |
3 | 陶用珍, 管映亭. 木质素的化学结构及其应用[J]. 纤维素科学与技术, 2003, 11(1): 42-55. |
TAO Yongzhen, GUAN Yingting. Study of chemical composition of lignin and its application[J]. Journal of Cellulose Science and Technology, 2003, 11(1): 42-55. | |
4 | LYU D, LI Y, WANG L J. Carbon aerogels derived from sodium lignin sulfonate embedded in carrageenan skeleton for methylene-blue removal[J]. International Journal of Biological Macromolecules, 2020, 148: 979-987. |
5 | WANG D, LEE S H, KIM J, et al. “Waste to wealth”: lignin as a renewable building block for energy harvesting/storage and environmental remediation[J]. ChemSusChem, 2020, 13(11): 2807-2827. |
6 | 王欢, 杨东杰, 钱勇, 等. 木质素基功能材料的制备与应用研究进展[J]. 化工进展, 2019, 38(1): 434-448. |
WANG Huan, YANG Dongjie, QIAN Yong, et al. Recent progress in the preparation and application of lignin-based functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 434-448. | |
7 | SUN K J, ZHOU Y, XU X E, et al. Lignin-derived graphene-like carbon nanosheets as an efficient catalyst support for Fischer-Tropsch synthesis[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(10): 6512-6517. |
8 | LIU Y, XU H H, YU H F, et al. Synthesis of lignin-derived nitrogen-doped carbon as a novel catalyst for 4-NP reduction evaluation[J]. Scientific Reports, 2020, 10(1): 20075. |
9 | KUPILA R, LAPPALAINEN K, HU T, et al. Lignin-based activated carbon-supported metal oxide catalysts in lactic acid production from glucose[J]. Applied Catalysis A: General, 2021, 612: 118011. |
10 | WU K J, YANG C Y, LIU Y, et al. Hierarchical meso- and macroporous carbon from lignin for kraft lignin decomposition to aromatic monomers[J]. Catalysis Today, 2021, 365: 214-222. |
11 | PEREIRA LOPES R, ASTRUC D. Biochar as a support for nanocatalysts and other reagents: Recent advances and applications[J]. Coordination Chemistry Reviews, 2021, 426: 213585. |
12 | ZHANG W, YU C Y, CHANG L B, et al. Three-dimensional nitrogen-doped hierarchical porous carbon derived from cross-linked lignin derivatives for high performance supercapacitors[J]. Electrochimica Acta, 2018, 282: 642-652. |
13 | PEÑAS-GARZÓN M, GÓMEZ-AVILÉS A, BELVER C, et al. Degradation pathways of emerging contaminants using TiO2-activated carbon heterostructures in aqueous solution under simulated solar light[J]. Chemical Engineering Journal, 2020, 392: 124867. |
14 | MARTIN-MARTINEZ M, BARREIRO M F F, SILVA A M T, et al. Lignin-based activated carbons as metal-free catalysts for the oxidative degradation of 4-nitrophenol in aqueous solution[J]. Applied Catalysis B: Environmental, 2017, 219: 372-378. |
15 | BEDIA J, ROSAS J M, RODRÍGUEZ-MIRASOL J, et al. Pd supported on mesoporous activated carbons with high oxidation resistance as catalysts for toluene oxidation[J]. Applied Catalysis B: Environmental, 2010, 94(1/2): 8-18. |
16 | MA Q Q, CUI L, ZHOU S, et al. Iron nanoparticles in situ encapsulated in lignin-derived hydrochar as an effective catalyst for phenol removal[J]. Environmental Science and Pollution Research, 2018, 25(21): 20833-20840. |
17 | ZAZO J A, BEDIA J, FIERRO C M, et al. Highly stable Fe on activated carbon catalysts for CWPO upon FeCl3 activation of lignin from black liquors[J]. Catalysis Today, 2012, 187(1): 115-121. |
18 | XU F, LU Q W, LI K P, et al. Green synthesis of magnetic mesoporous carbon from waste-lignin and its application as an efficient heterogeneous Fenton catalyst[J]. Journal of Cleaner Production, 2021, 285: 125363. |
19 | ZHOU H, XU H H, LIU Y. Aerobic oxidation of 5‑hydroxymethylfurfural to 2, 5-furandicarboxylic acid over Co/Mn-lignin coordination complexes-derived catalysts[J]. Applied Catalysis B: Environmental, 2019, 244: 965-973. |
20 | QI Y F, LI J, ZHANG Y Q, et al. Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: Role of single cobalt and electron transfer pathway[J]. Applied Catalysis B: Environmental, 2021, 286: 119910. |
21 | ZHOU H, XU H H, WANG X K, et al. Convergent production of 2, 5-furandicarboxylic acid from biomass and CO2 [J]. Green Chemistry, 2019, 21(11): 2923-2927. |
22 | ZHOU H, HONG S, ZHANG H, et al. Toward biomass-based single-atom catalysts and plastics: Highly active single-atom Co on N-doped carbon for oxidative esterification of primary alcohols[J]. Applied Catalysis B: Environmental, 2019, 256: 117767. |
23 | GUILLÉN E, RICO R, LÓPEZ-ROMERO J M, et al. Pd-activated carbon catalysts for hydrogenation and Suzuki reactions[J]. Applied Catalysis A: General, 2009, 368(1/2): 113-120. |
24 | CHIEFFI G, FECHLER N, ESPOSITO D. Valorization of lignin waste from hydrothermal treatment of biomass: towards porous carbonaceous composites for continuous hydrogenation[J]. RSC Advances, 2015, 5(78): 63691-63696. |
25 | KWON G, CHO D W, TSANG D C W, et al. One step fabrication of carbon supported cobalt pentlandite (Co9S8) via the thermolysis of lignin and Co3O4 [J]. Journal of CO2 Utilization, 2018, 27: 196-203. |
26 | DU B Y, LIU C, WANG X, et al. Renewable lignin-based carbon nanofiber as Ni catalyst support for depolymerization of lignin to phenols in supercritical ethanol/water[J]. Renewable Energy, 2020, 147: 1331-1339. |
27 | WANG X Q, QIU M, SMITH R L, et al. Ferromagnetic lignin-derived ordered mesoporous carbon for catalytic hydrogenation of furfural to furfuryl alcohol[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(49): 18157-18166. |
28 | KURNIA I, YOSHIDA A, CHAIHAD N, et al. Synthesis of p-menthane-3, 8-diol from citronellal over lignin-derived carbon acid catalysts[J]. New Journal of Chemistry, 2020, 44(25): 10441-10447. |
29 | FAN H L, ZHANG Z F, HOU M Q, et al. Fabrication of superamphiphilic carbon using lignosulfonate for enhancing selective hydrogenation reactions in Pickering emulsions[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 25234-25240. |
30 | BUDARIN V L, CLARK J H, HENSCHEN J, et al. Processed lignin as a byproduct of the generation of 5-(chloromethyl) furfural from biomass: a promising new mesoporous material[J]. ChemSusChem, 2015, 8(24): 4172-4179. |
31 | GUO F, XIU Z L, LIANG Z X. Synthesis of biodiesel from acidified soybean soapstock using a lignin-derived carbonaceous catalyst[J]. Applied Energy, 2012, 98: 47-52. |
32 | PUA F L, FANG Z, ZAKARIA S, et al. Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin[J]. Biotechnology for Biofuels, 2011, 4(1): 1-8. |
33 | MA Z H, XING X Y, QU Z, et al. Activity of microporous lignin-derived carbon-based solid catalysts used in biodiesel production[J]. International Journal of Biological Macromolecules, 2020, 164: 1840-1846. |
34 | NAMCHOT W, PANYACHARAY N, JONGLERTJUNYA W, et al. Hydrolysis of delignified sugarcane bagasse using hydrothermal technique catalyzed by carbonaceous acid catalysts[J]. Fuel, 2014, 116: 608-616. |
35 | ZHU J D, GAN L H, LI B X, et al. Synthesis and characteristics of lignin-derived solid acid catalysts for microcrystalline cellulose hydrolysis[J]. Korean Journal of Chemical Engineering, 2017, 34(1): 110-117. |
36 | GAN L H, ZHU J D, LV L. Cellulose hydrolysis catalyzed by highly acidic lignin-derived carbonaceous catalyst synthesized via hydrothermal carbonization[J]. Cellulose, 2017, 24(12): 5327-5339. |
37 | WANG S, ZHANG L Q, SIMA G B, et al. Efficient hydrolysis of bagasse cellulose to glucose by mesoporous carbon solid acid derived from industrial lignin[J]. Chemical Physics Letters, 2019, 736: 136808. |
38 | GUO F, FANG Z, ZHOU T J. Conversion of fructose and glucose into 5-hydroxymethylfurfural with lignin-derived carbonaceous catalyst under microwave irradiation in dimethyl sulfoxide-ionic liquid mixtures[J]. Bioresource Technology, 2012, 112: 313-318. |
39 | KANG S M, YE J, ZHANG Y, et al. Preparation of biomass hydrochar derived sulfonated catalysts and their catalytic effects for 5-hydroxymethylfurfural production[J]. RSC Advances, 2013, 3(20): 7360-7366. |
40 | GAN L H, LYU L, SHEN T R, et al. Sulfonated lignin-derived ordered mesoporous carbon with highly selective and recyclable catalysis for the conversion of fructose into 5-hydroxymethylfurfural[J]. Applied Catalysis A: General, 2019, 574: 132-143. |
41 | WANG S, LYU L, SIMA G B, et al. Optimization of fructose dehydration to 5-hydroxymethylfurfural catalyzed by SO3H-bearing lignin-derived ordered mesoporous carbon[J]. Korean Journal of Chemical Engineering, 2019, 36(7): 1042-1050. |
42 | HU L, TANG X, WU Z, et al. Magnetic lignin-derived carbonaceous catalyst for the dehydration of fructose into 5-hydroxymethylfurfural in dimethylsulfoxide[J]. Chemical Engineering Journal, 2015, 263: 299-308. |
43 | BEDIA J, ROSAS J M, MÁRQUEZ J, et al. Preparation and characterization of carbon based acid catalysts for the dehydration of 2-propanol[J]. Carbon, 2009, 47(1): 286-294. |
44 | 韩小雪, 陈妍希, 赵俏, 等. 碳限域铁基费托合成催化剂研究进展[J]. 化工进展, 2021, 40(4): 1917-1927. |
HAN Xiaoxue, CHEN Yanxi, ZHAO Qiao, et al. Advances in carbon-confined iron-based catalysts for Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1917-1927. | |
45 | QIN H F, KANG S F, WANG Y G, et al. Lignin-based fabrication of Co@C core-shell nanoparticles as efficient catalyst for selective Fischer-Tropsch synthesis of C5+ compounds[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1240-1247. |
46 | LAHTI R, BERGNA D, ROMAR H, et al. Characterization of cobalt catalysts on biomass-derived carbon supports[J]. Topics in Catalysis, 2017, 60(17/18): 1415-1428. |
47 | QIN H F, WANG B, ZHANG C Y, et al. Lignin based synthesis of graphitic carbon-encapsulated iron nanoparticles as effective catalyst for forming lower olefins via Fischer-Tropsch synthesis[J]. Catalysis Communications, 2017, 96: 28-31. |
48 | QIN H F, ZHOU Y, BAI J R, et al. Lignin-derived thin-walled graphitic carbon-encapsulated iron nanoparticles: growth, characterization, and applications[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1917-1923. |
49 | LI P, WANG H L, FAN W J, et al. Salt assisted fabrication of lignin-derived Fe, N, P, S codoped porous carbon as trifunctional catalyst for Zn-air batteries and water-splitting devices[J]. Chemical Engineering Journal, 2021, 421: 129704. |
50 | SHEN Y X, PENG F, CAO Y H, et al. Preparation of nitrogen and sulfur co-doped ultrathin graphitic carbon via annealing bagasse lignin as potential electrocatalyst towards oxygen reduction reaction in alkaline and acid media[J]. Journal of Energy Chemistry, 2019, 34: 33-42. |
51 | ZHANG X L, YU D L, ZHANG Y Q, et al. Nitrogen- and sulfur-doped carbon nanoplatelets via thermal annealing of alkaline lignin with urea as efficient electrocatalysts for oxygen reduction reaction[J]. RSC Advances, 2016, 6(106): 104183-104192. |
52 | ZHANG M L, SONG Y L, TAO H C, et al. Lignosulfonate biomass derived N and S co-doped porous carbon for efficient oxygen reduction reaction[J]. Sustainable Energy & Fuels, 2018, 2(8): 1820-1827. |
53 | SHEN Y X, LI Y H, YANG G X, et al. Lignin derived multi-doped (N, S, Cl) carbon materials as excellent electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells[J]. Journal of Energy Chemistry, 2020, 44: 106-114. |
54 | GRAGLIA M, PAMPEL J, HANTKE T, et al. Nitro lignin-derived nitrogen-doped carbon as an efficient and sustainable electrocatalyst for oxygen reduction[J]. ACS Nano, 2016, 10(4): 4364-4371. |
55 | CHEN X Y, KUO D H, DONGFANG L, et al. Synthesis and photocatalytic activity of mesoporous TiO2 nanoparticle using biological renewable resource of un-modified lignin as a template[J]. Microporous and Mesoporous Materials, 2016, 223: 145-151. |
56 | WANG H, QIU X Q, ZHONG R S, et al. One-pot in situ preparation of a lignin-based carbon/ZnO nanocomposite with excellent photocatalytic performance[J]. Materials Chemistry and Physics, 2017, 199: 193-202. |
57 | WANG H, QIU X Q, LIU W F, et al. Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity[J]. Applied Surface Science, 2017, 426: 206-216. |
58 | DONAR Y O, BILGE S, SINAĞ A. Utilisation of lignin as a model biomass component for preparing a highly active photocatalyst under UV and visible light[J]. Materials Science in Semiconductor Processing, 2020, 118: 105151. |
59 | GÓMEZ-AVILÉS A, PEÑAS-GARZÓN M, BEDIA J, et al. C-modified TiO2 using lignin as carbon precursor for the solar photocatalytic degradation of acetaminophen[J]. Chemical Engineering Journal, 2019, 358: 1574-1582. |
60 | VENKATESAN SAVUNTHARI K, ARUNAGIRI D, SHANMUGAM S, et al. Green synthesis of lignin nanorods/g-C3N4 nanocomposite materials for efficient photocatalytic degradation of triclosan in environmental water[J]. Chemosphere, 2021, 272: 129801. |
61 | TIAN L F, HU Y Z, GUO Y R, et al. Dual effect of lignin amine on fabrication of magnetic Fe3O4/C/ZnO nanocomposite in situ and photocatalytic property[J]. Ceramics International, 2018, 44(12): 14480-14486. |
62 | ZHANG B P, YANG D J, QIU X Q, et al. Fabricating ZnO/lignin-derived flower-like carbon composite with excellent photocatalytic activity and recyclability[J]. Carbon, 2020, 162: 256-266. |
63 | SRISASIWIMON N, CHUANGCHOTE S, LAOSIRIPOJANA N, et al. TiO2/lignin-based carbon composited photocatalysts for enhanced photocatalytic conversion of lignin to high value chemicals[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13968-13976. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[12] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[13] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[14] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[15] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |