化工进展 ›› 2022, Vol. 41 ›› Issue (5): 2451-2459.DOI: 10.16085/j.issn.1000-6613.2021-1186
收稿日期:
2021-06-03
修回日期:
2021-08-17
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
王晓胜,余长春
作者简介:
杨韬(1996—),男,硕士研究生,研究方向为工业催化。E-mail:基金资助:
YANG Tao(), WANG Xiaosheng(), LI Ranjia, YU Changchun()
Received:
2021-06-03
Revised:
2021-08-17
Online:
2022-05-05
Published:
2022-05-24
Contact:
WANG Xiaosheng,YU Changchun
摘要:
丝光沸石催化二甲醚羰基化反应具有反应条件温和、产物选择性高等优点,近年来逐渐成为研究热点。丝光沸石因具有独特的结构,对二甲醚羰基化反应具有较高的催化效率,但同时也存在易积炭失活、寿命短、稳定性较差的问题。本文介绍了近年来研究人员为了克服上述问题对丝光沸石进行的各种改性研究的进展。目前,常用的改性方法包括酸中心调控、介微孔复合、形貌与晶粒尺寸调控和金属修饰四类,四种改性方法可通过调节反应活性中心数量、提高传质效率及抑制积炭来提高丝光沸石催化剂的活性和稳定性,但各有侧重。基于现有成果,丝光沸石催化剂下一步的改性研究重点是在强化传质的前提下通过各种方法来脱除或消灭位于传质通道中的积炭中心。
中图分类号:
杨韬, 王晓胜, 李然家, 余长春. 用于二甲醚羰基化反应的丝光沸石催化剂改性研究进展[J]. 化工进展, 2022, 41(5): 2451-2459.
YANG Tao, WANG Xiaosheng, LI Ranjia, YU Changchun. Advances in the modification of mordenite catalysts for the carbonylation of dimethyl ether[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2451-2459.
1 | 王恒生, 王志会, 聂涛, 等. 羰基化反应研究与应用[J]. 化工科技, 2011, 19(2): 49-54. |
WANG Hengsheng, WANG Zhihui, NIE Tao, et al. Study and application of carbonylation[J]. Science & Technology In Chemical Industry, 2011, 19(2): 49-54. | |
2 | 刘建华, 陈静, 夏春谷. 羰基化反应新技术研究进展[J]. 石油化工, 2010, 39(11): 1189-1197. |
LIU Jianhua, CHEN Jing, XIA Chungu. Progress of new techniques for carbonylation reactions[J]. Petrochemical Technology, 2010, 39(11): 1189-1197. | |
3 | László KOLLÁR. Modern carbonylation methods[M]. Weinheim: Wiley‐VCH Verlag GmbH & Co. KGaA., 2008. |
4 | 王辉, 吴志连, 邰志军, 等. 合成气经二甲醚羰基化及乙酸甲酯加氢制无水乙醇的研究进展[J]. 化工进展, 2019, 38(10): 4497-4503. |
WANG Hui, WU Zhilian, TAI Zhijun, et al. Advances in synthesis of anhydrous ethanol from syngas via carbonylation of dimethyl ether and hydrogenation of methyl acetate[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4497-4503. | |
5 | CHEUNG Patricia, BHAN Aditya, SUNLEY Glenn J, et al. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites[J]. Angew. Chem. Int. Ed. Engl., 2006, 45(10): 1617-20. |
6 | BHAN Aditya, ALLIAN Ayman D, SUNLEY Glenn J, et al. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls[J]. Journal of the American Chemical Society, 2007, 129(16): 4919-4924. |
7 | BHAN Aditya, IGLESIA Enrique. A link between reactivity and local structure in acid catalysis on zeolites[J]. Accounts of Chemical Research, 2008, 41(4): 559-567. |
8 | CHEUNG Patricia, BHAN Aditya, SUNLEY Glenn J, et al. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites[J]. Journal of Catalysis, 2007, 245(1): 110-123. |
9 | BORONAT Mercedes, Cristina MARTÍNEZ-SÁNCHEZ, David LAW, et al. Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO[J]. Journal of the American Chemical Society, 2008, 130(48): 16316-16323. |
10 | BORONAT Mercedes, MARTINEZ Crisitna, CORMA Avelino. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite[J]. Phys.Chem. Chem. Phys., 2011, 13(7): 2603-12. |
11 | LI Bojie, XU Jun, HAN Bing, et al. Insight into dimethyl ether carbonylation reaction over mordenite zeolite from in-situ solid-state NMR spectroscopy[J]. The Journal of Physical Chemistry C, 2013, 117(11): 5840-5847. |
12 | HE Ting, REN Pengju, LIU Xianchun, et al. Direct observation of DME carbonylation in the different channels of H-MOR zeolite by continuous-flow solid-state NMR spectroscopy[J]. Chemical Communications, 2015, 51(94): 16868-16870. |
13 | HE Ting, LIU Xianchun, XU Shutao, et al. Role of 12-ring channels of mordenite in DME carbonylation investigated by solid-state NMR[J]. The Journal of Physical Chemistry C, 2016, 120(39): 22526-22531. |
14 | CHU Yueying, An-Ya LO, WANG Chao, et al. Origin of high selectivity of dimethyl ether carbonylation in the 8-membered ring channel of mordenite zeolite[J]. The Journal of Physical Chemistry C, 2019, 123(25): 15503-15512. |
15 | RASMUSSEN D B, CHRISTENSEN J M, TEMEL B, et al. Ketene as a reaction intermediate in the carbonylation of dimethyl ether to methyl acetate over mordenite[J]. Angew. Chem. Int. Ed. Engl., 2015, 54(25): 726104. |
16 | ZHOU Hui, ZHU Wenliang, SHI Lei, et al. In situ DRIFT study of dimethyl ether carbonylation to methyl acetate on H-mordenite[J]. Journal of Molecular Catalysis A: Chemical, 2016, 417: 1-9. |
17 | WANG Xiaosheng, LI Ranjia, YU Changchun, et al. Study on the deactivation process of dimethyl ether carbonylation reaction over Mordenite catalyst[J]. Fuel, 2021, 286:119480. |
18 | CHENG Zaizhe, HUANG Shouying, LI Ying, et al. Role of Brønsted acid sites within 8-MR of mordenite in the deactivation roadmap for dimethyl ether carbonylation[J]. ACS Catalysis, 2021, 11(9): 5647-5657. |
19 | LIU Junlong, XUE Huifu, HUANG Xiumin, et al. Stability enhancement of H-mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine[J]. Chinese Journal of Catalysis, 2010, 31(7): 729-738. |
20 | XUE Huifu, HUANG Xiumin, ZHAN Ensheng, et al. Selective dealumination of mordenite for enhancing its stability in dimethyl ether carbonylation[J]. Catalysis Communications, 2013, 37: 75-79. |
21 | CAI Kai, HUANG Shouying, LI Ying, et al. Influence of acid strength on the reactivity of dimethyl ether carbonylation over H-MOR[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(2): 2027-2034. |
22 | LI Ying, SUN Qi, HUANG Shouying, et al. Dimethyl ether carbonylation over pyridine-modified MOR: enhanced stability influenced by acidity[J]. Catalysis Today, 2018, 311: 81-88. |
23 | ZHAO Na, CHENG Qingpeng, Shuaishuai LYU, et al. Promoting dimethyl ether carbonylation over hot-water pretreated H-mordenite[J]. Catalysis Today, 2020, 339: 86-92. |
24 | WANG Xiaosheng, LI Ranjia, YU Changchun, et al. Enhancing the dimethyl ether carbonylation performance over mordenite catalysts by simple alkaline treatment[J]. Fuel, 2019, 239: 794-803. |
25 | WANG Xiaosheng, LI Ranjia, YU Changchun, et al. Influence of acid site distribution on dimethyl ether carbonylation over mordenite[J]. Industrial & Engineering Chemistry Research, 2019, 58(39): 18065-18072. |
26 | HUANG Xiumin, MA Meng, LI Mingrun, et al. Regulating the location of framework aluminium in mordenite for the carbonylation of dimethyl ether[J]. Catalysis Science & Technology, 2020, 10(21): 7280-7290. |
27 | LIU Shiping, FANG Xudong, LIU Yong, et al. Dimethyl ether carbonylation over mordenite zeolite modified by alkyimidazolium ions[J]. Catalysis Communications, 2020, 147. |
28 | LIU Shiping, LIU Hongchao, MA Xiangang, et al. Identifying and controlling the acid site distributions in mordenite zeolite for dimethyl ether carbonylation reaction by means of selective ion-exchange[J]. Catalysis Science & Technology, 2020, 10(14): 4663-4672. |
29 | WANG Xiaosheng, LI Ranjia, YU Changchun, et al. Enhanced activity and stability over hierarchical porous mordenite (MOR) for carbonylation of dimethyl ether: influence of mesopores[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 960-969. |
30 | LIU Shuaipeng, CHENG Zaizhe, LI Ying, et al. Improved catalytic performance in dimethyl ether carbonylation over hierarchical mordenite by enhancing mass transfer[J]. Industrial & Engineering Chemistry Research, 2020, 59(31): 13861-13869. |
31 | SHENG Haibing, QIAN Weixin, ZHANG Haitao, et al. Synthesis of hierarchical porous H-mordenite zeolite for carbonylation of dimethyl ether[J]. Microporous and Mesoporous Materials, 2020, 295:109950. |
32 | XUE Huifu, HUANG Xiumin, DITZEL Evert, et al. Coking on micrometer- and nanometer-sized mordenite during dimethyl ether carbonylation to methyl acetate[J]. Chinese Journal of Catalysis, 2013, 34(8): 1496-1503. |
33 | XUE Huifu, HUANG Xinmin, DITZEL Evert, et al. Dimethyl ether carbonylation to methyl acetate over nanosized mordenites[J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11510-11515. |
34 | MA Meng, HUANG Xiumin, ZHAN Ensheng, et al. Synthesis of mordenite nanosheets with shortened channel lengths and enhanced catalytic activity[J]. Journal of Materials Chemistry A, 2017, 5(19): 8887-8891. |
35 | LIU Yahua, ZHAO Na, XIAN Hui, et al. Facilely synthesized H-mordenite nanosheet assembly for carbonylation of dimethyl ether[J]. ACS Appl. Mater. Interfaces, 2015, 7(16): 8398-8403. |
36 | YAO Jie, FENG Xiaobo, FAN Jiaqi, et al. Effects of mordenite zeolite catalyst synthesis conditions on dimethyl ether carbonylation[J]. Microporous and Mesoporous Materials, 2020, 306:110431. |
37 | LI Lingyun, WANG Quanyi, LIU Hongchao, et al. Preparation of spherical mordenite zeolite assemblies with excellent catalytic performance for dimethyl Ether carbonylation[J]. ACS Appl. Mater. Interfaces, 2018, 10(38): 32239-32246. |
38 | LI Ying, LI Zehua, HUANG Shouying, et al. Morphology-dependent catalytic performance of mordenite in carbonylation of dimethyl ether: enhanced activity with high c/b ratio[J]. ACS Appl. Mater. Interfaces, 2019, 11(27): 24000-24005. |
39 | HE Pei, LI Ying, CAI Kai, et al. Nano-assembled mordenite zeolite with tunable morphology for carbonylation of dimethyl ether[J]. ACS Applied Nano Materials, 2020, 3(7): 6460-6468. |
40 | WEN Fuli, DING Xiangnong, FANG Xudong, et al. Crystal size sensitivity of HMOR zeolite in dimethyl ether carbonylation[J]. Catalysis Communications, 2021, 154:106309. |
41 | LU Peng, YANG Guohui, TANAKA Yuki, et al. Ethanol direct synthesis from dimethyl ether and syngas on the combination of noble metal impregnated zeolite with Cu/ZnO catalyst[J]. Catalysis Today, 2014, 232: 22-26. |
42 | WANG Shurong, GUO Wenen, ZHU Lingjun, et al. Methyl acetate synthesis from dimethyl ether carbonylation over mordenite modified by cation exchange[J]. The Journal of Physical Chemistry C, 2014, 119(1): 524-533. |
43 | REULE Allen A C, SEMAGINA Natalia. Zinc hinders deactivation of copper-mordenite: dimethyl ether carbonylation[J]. ACS Catalysis, 2016, 6(8): 4972-4975. |
44 | REULE Allen A C, PRASAD Vinay, SEMAGINA Natalia. Effect of Cu and Zn ion-exchange locations on mordenite performance in dimethyl ether carbonylation[J]. Microporous and Mesoporous Materials, 2018, 263: 220-230. |
45 | ZHOU Hui, ZHU Wenliang, SHI Lei, et al. Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate[J]. Catalysis Science & Technology, 2015, 5(3): 1961-1968. |
46 | MA Meng, ZHAN Ensheng, HUANG Xiumin, et al. Carbonylation of dimethyl ether over Co-HMOR[J]. Catalysis Science & Technology, 2018, 8(8): 2124-2130. |
47 | ZHANG Zhitao, ZHAO Na, MA Kui, et al. Isolated zinc in mordenite stabilizing carbonylation of dimethyl ether to methyl acetate[J]. Chinese Chemical Letters, 2019, 30(02): 513-516. |
48 | LI Shiyue, CAI Kai, LI Ying, et al. Identifying the active silver species in carbonylation of dimethyl ether over Ag-HMOR[J]. ChemCatChem, 2020, 12(12): 3290-3297. |
49 | ZHAO Peng, QIAN Weixin, MA Hongfang, et al. Effect of Zr incorporation on mordenite catalyzed dimethyl ether carbonylation[J]. Catalysis Letters, 2020. |
50 | BLASCO Teresa, BORONAT Mercedes, CONCEPCION Patricia, et al. Carbonylation of methanol on metal-acid zeolites: evidence for a mechanism involving a multisite active center[J]. Angew Chem. Int. Ed. Engl., 2007, 46(21): 3938-3941. |
51 | ZHAN Huimin, HUANG Shouying, LI Ying, et al. Elucidating the nature and role of Cu species in enhanced catalytic carbonylation of dimethyl ether over Cu/H-MOR[J]. Catalysis Science & Technology, 2015, 5(9): 4378-4389. |
52 | LI Ying, HUANG Shouying, CHENG Zaizhe, et al. Synergy between Cu and Brønsted acid sites in carbonylation of dimethyl ether over Cu/H-MOR[J]. Journal of Catalysis, 2018, 365: 440-449. |
53 | CHENG Zaizhe, HUANG Shouying, LI Ying, et al. Carbonylation of dimethyl ether over MOR and Cu/H-MOR catalysts: comparative investigation of deactivation behavior[J]. Applied Catalysis A: General, 2019, 576: 1-10. |
54 | LI Ying, HUANG Shouying, CHENG Zaiche, et al. Promoting the activity of Ce-incorporated MOR in dimethyl ether carbonylation through tailoring the distribution of Brønsted acids[J]. Applied Catalysis B: Environmental, 2019, 256:117777. |
[1] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[2] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[3] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[4] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[5] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[6] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[7] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[8] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[9] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[10] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[11] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[12] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[13] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[14] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[15] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |