化工进展 ›› 2023, Vol. 42 ›› Issue (1): 215-225.DOI: 10.16085/j.issn.1000-6613.2022-0558
刘亮1(), 王朝曦1, 李鑫龙1, 张高山2, 王守阳2, 张林林1, 陆畅1, 卿梦霞1()
收稿日期:
2022-04-04
修回日期:
2022-07-01
出版日期:
2023-01-25
发布日期:
2023-02-20
通讯作者:
卿梦霞
作者简介:
刘亮(1967—),男,博士,教授,研究方向为煤与生物质高效清洁利用。E-mail:liuliang_hn@126.com。
基金资助:
LIU Liang1(), WANG Zhaoxi1, LI Xinlong1, ZHANG Gaoshan2, WANG Shouyang2, ZHANG Linlin1, LU Chang1, QING Mengxia1()
Received:
2022-04-04
Revised:
2022-07-01
Online:
2023-01-25
Published:
2023-02-20
Contact:
QING Mengxia
摘要:
NH3选择性催化还原(SCR)技术具有较高的脱硝效率、优良的选择性和实用性,是当前燃煤电厂去除NO x 的主流方法。其中V2O5/TiO2催化剂在中温段(300~450℃)具有较高的脱硝活性和抗硫性,被广泛应用。但是,烟气中的SO3、NH3和水蒸气会发生反应生成硫酸氢铵(ABS)和硫酸铵(AS),其中硫酸氢铵在低温条件下因毛细冷凝现象沉积在V2O5/TiO2催化剂表面致其中毒,活性降低。为了改善低温条件下催化剂中毒问题,本文通过分析ABS在催化剂表面的生成机理、对催化剂的危害及催化剂抗ABS中毒改性研究进展,发现钒钛系脱硝催化剂抗ABS中毒改进措施主要集中在抑制硫酸氢铵生成、促进硫酸氢铵分解两方面。最后,总结了合理调控催化剂壁厚、孔径和隔离层等物理结构以及添加MoO3、BaO、Nb2O5、Fe2O3、CeO2、SiO2等助剂对低温条件下SCR脱硝催化剂抗ABS中毒性能的促进作用,为未来提高低温条件下SCR脱硝催化剂抗ABS中毒性能的研究提供了一定的理论指导。
中图分类号:
刘亮, 王朝曦, 李鑫龙, 张高山, 王守阳, 张林林, 陆畅, 卿梦霞. 钒钛系脱硝催化剂抗硫酸氢铵中毒改进措施研究进展[J]. 化工进展, 2023, 42(1): 215-225.
LIU Liang, WANG Zhaoxi, LI Xinlong, ZHANG Gaoshan, WANG Shouyang, ZHANG Linlin, LU Chang, QING Mengxia. Research progress on the improvement of vanadium and titanium denitrification catalysts against ammonium bisulfate poisoning[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 215-225.
1 | JAMES J A, SUNG S, JEONG H, et al. Impacts of combined cooling, heating and power systems, and rainwater harvesting on water demand, carbon dioxide, and NO x emissions for Atlanta[J]. Environmental Science & Technology, 2018, 52(1): 3-10. |
2 | 陈晨, 陆强, 蔺卓玮, 等. 燃煤电厂废弃SCR脱硝催化剂元素回收研究进展[J]. 化工进展, 2016, 35(10): 3306-3312. |
CHEN Chen, LU Qiang, LIN Zhuowei, et al. Research progress of element recovery of waste De-NO x SCR catalyst from coal-fired power plants[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3306-3312. | |
3 | 王宝冬, 汪国高, 刘斌, 等. 选择性催化还原脱硝催化剂的失活、失效预防、再生和回收利用研究进展[J]. 化工进展, 2013, 32(S1): 133-139. |
WANG Baodong, WANG Guogao, LIU Bin, et al. Development of SCR catalyst deactivation, regeneration and recycling[J]. Chemical Industry and Engineering Progress, 2013, 32(S1): 133-139 | |
4 | ZHU Minghui, LAI Jun-Kun, WACHS I E. Formation of N2O greenhouse gas during SCR of NO with NH3 by supported vanadium oxide catalysts[J]. Applied Catalysis B: Environmental, 2018, 224: 836-840. |
5 | 张道军, 马子然, 孙琦, 等. 选择催化还原 (SCR) 反应机理研究进展[J]. 化工进展, 2019, 38(4): 1611-1623. |
ZHANG Daojun, MA Ziran, SUN Qi, et al. Progress in the mechanism of selective catalytic reduction (SCR) reaction[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1611-1623. | |
6 | SHI Yajuan, SHU Hang, ZHANG Yuhua, et al. Formation and decomposition of NH4HSO4 during selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts[J]. Fuel Processing Technology, 2016, 150: 141-147. |
7 | 李高磊. 超低排放燃煤电厂SO3生成及控制的试验研究[D]. 武汉: 华中科技大学, 2019. |
LI Gaolei. Experimental research on SO3 generation and control in ultra-low emission coal-fired power plant[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
8 | 唐昊, 李慧, 杨江毅, 等. NH3-SCR工艺中硫酸铵盐的生成与分解机理研究进展[J]. 化工进展, 2018, 37(3): 822-831. |
TANG Hao, LI Hui, YANG Jiangyi, et al. Research progress on the formation and decomposition mechanism of ammonium-sulfate salts in NH3-SCR technology[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 822-831. | |
9 | 姚宣, 郑鹏, 郑伟. SCR脱硝系统最低连续喷氨温度的研究[J]. 中国电力, 2016, 49(1): 146-150. |
YAO Xuan, ZHENG Peng, ZHENG Wei. Study on minimum continuous-operation temperature of SCR system[J]. Electric Power, 2016, 49(1): 146-150. | |
10 | MATSUDA S, KAMO T, KATO A, et al. Deposition of ammonium bisulfate in the selective catalytic reduction of nitrogen oxides with ammonia[J]. Industrial & Engineering Chemistry Product Research and Development, 1982, 21(1): 48-52. |
11 | 束航, 张玉华, 范红梅, 等. SCR脱硝中催化剂表面NH4HSO4生成及分解的原位红外研究[J]. 化工学报, 2015, 66(11): 4460-4468. |
SHU Hang, ZHANG Yuhua, FAN Hongmei, et al. FT-IR study of formation and decomposition of ammonium bisulfates on surface of SCR catalyst for nitrogen removal[J]. CIESC Journal, 2015, 66(11): 4460-4468. | |
12 | 张萼松. SCR催化剂表面硫酸氢铵分解机制及催化剂改性研究[D]. 武汉: 华中科技大学, 2019. |
ZHANG Esong. Study of decomposition mechanism of ABS on surface of SCR catalyst and catalyst modification[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
13 | 杨建国, 杨炜樱, 郑方栋, 等. NH3和SO3对硫酸氢铵和硫酸铵生成的影响[J]. 燃料化学学报, 2018, 46(1): 92-98. |
YANG Jianguo, YANG Weiying, ZHENG Fangdong, et al. Effects of NH3 and SO3 on the generation of ammonium bisulfate and ammonium sulfate[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 92-98. | |
14 | 廖永进, 余岳溪, 束航, 等. V2O5/TiO2催化剂上NH4HSO4形成机理研究[J]. 科学技术与工程, 2017, 17(10): 81-88. |
LIAO Yongjin, YU Yuexi, SHU Hang, et al. Study of mechanism of NH4HSO4 formation on V2O5/TiO2 catalyst[J]. Science Technology and Engineering, 2017, 17(10): 81-88. | |
15 | 史雅娟. SCR烟气脱硝气相主体中硫酸铵盐生成特性研究[D]. 南京: 东南大学, 2017. |
SHI Yajuan. Investigation on the formation characteristics of ammonium sulfate in flue gas phase during SCR process[J]. Nanjing: Southeast University, 2017. | |
16 | 郑方栋. SCR脱硝烟气中硫酸氢铵的生成机理研究[D]. 杭州: 浙江大学, 2017. |
ZHENG Fangdong. Study on ammonium bisulfate formation mechanism in SCR flue gas[D]. Hangzhou: Zhejiang University, 2017. | |
17 | 史雅娟, 张玉华, 束航, 等. SO2与NH3/NO对SCR脱硝中PM2.5排放特性的影响[J]. 现代化工, 2016, 36(2): 90-94. |
SHI Yajuan, ZHANG Yuhua, SHU Hang, et al. Effect of SO2 and NH3 on emission characteristics of PM2.5 in SCR[J]. Modern Chemical Industry, 2016, 36(2): 90-94. | |
18 | SI Fengqi, ROMERO C E, YAO Zheng, et al. Inferential sensor for on-line monitoring of ammonium bisulfate formation temperature in coal-fired power plants[J]. Fuel Processing Technology, 2009, 90(1): 56-66. |
19 | QING Mengxia, SU Sheng, WANG Lele, et al. Getting insight into the oxidation of SO2 to SO3 over V2O5-WO3/TiO2 catalysts: reaction mechanism and effects of NO and NH3 [J]. Chemical Engineering Journal, 2019, 361: 1215-1224. |
20 | XIONG Jin, LI Yuran, LIN Yuting, et al. Formation of sulfur trioxide during the SCR of NO with NH3 over a V2O5/TiO2 catalyst[J]. RSC Advances, 2019, 9(67): 38952-38961. |
21 | 卿梦霞, 张鑫, 刘亮, 等. 燃煤烟气脱硝副产物硫酸氢铵/硫酸铵沉积与分解特性研究[J]. 化工学报, 2021, 72(2): 1132-1141. |
QING Mengxia, ZHANG Xin, LIU Liang, et al. Study on deposition and decomposition characteristics of ammonium bisulfate/ammonium sulfate as by-product of denitration in coal-fired flue gas[J]. CIESC Journal, 2021, 72(2): 1132-1141. | |
22 | 骆律源. 空预器中硫酸铵盐的形成特性及其对颗粒物排放的影响[D]. 南京: 东南大学, 2018. |
LUO Lyuyuan. Formation characteristics of ammonium sulfate salt in air preheater and its effect on particulate emission[D]. Nanjing: Southeast University, 2018. | |
23 | 焦坤灵, 陈向阳, 别璇, 等. SCR脱硝副产物硫酸氢铵特性研究: 现状及发展[J]. 洁净煤技术, 2021, 27(1): 108-124. |
JIAO Kunling, CHEN Xiangyang, BIE Xuan, et al. Status and development for characteristic of ammonium bisulfate as a by-product of SCR denitrification[J]. Clean Coal Technology, 2021, 27(1): 108-124. | |
24 | 王乐乐. 废弃SCR催化剂中重金属钒、砷的迁移特性及无害化处置研究[D]. 武汉: 华中科技大学, 2018. |
WANG Lele. Study on migration characteristics of vanadium, arsenic heavy metals from spent SCR catalyst and its harmless treatment[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
25 | 杨超, 程华, 黄碧纯. 抗SO2和H2O中毒的低温NH3-SCR脱硝催化剂研究进展[J]. 化工进展, 2014, 33(4): 907-913. |
YANG Chao, CHENG Hua, HUANG Bichun. Review of de NO x catalysts with SO2 and H2O poisoning resistance for low-temperature NH3-SCR[J]. Chemical Industry and Engineering Progress, 2014, 33(4): 907-913. | |
26 | 高磊. SCR催化剂表面硫酸氢铵分解与反应特性研究[D]. 太原: 中北大学, 2019. |
GAO Lei. Investigation on decomposition and reactivity of NH4HSO4 on the surface of SCR catalysts[D]. Taiyuan: North University of China, 2019. | |
27 | 卿梦霞. 燃煤烟气SO3与硫酸氢铵生成机理研究[D]. 武汉: 华中科技大学, 2019. |
QING Mengxia. Study on generation mechanism of SO3 and ammounium hydrogen sulfate in coal-fired flue gas[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
28 | 裴鑫琦. 低温钒钛系SCR脱硝催化剂改性研究[D]. 北京: 华北电力大学, 2021. |
PEI Xinqi. Research on modification of low temperature V2O5/TiO2 SCR catalysts[D]. Beijing: North China Electric Power University, 2021. | |
29 | MITSUI Y, IMADA N, KIKKAWA H, et al. Study of Hg and SO3 behavior in flue gas of oxy-fuel combustion system[J]. International Journal of Greenhouse Gas Control, 2011, 5: S143-S150. |
30 | 尹子骏, 苏胜, 王中辉, 等. 燃煤烟气中SO3与NH4HSO4生成特性及其控制方法研究进展[J]. 化工进展, 2021, 40(4): 2328-2337. |
YIN Zijun, SU Sheng, WANG Zhonghui, et al. Research progress on the characteristics and control methods of SO3 and NH4HSO4 formation in coal-fired flue gas[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2328-2337. | |
31 | KAMATA H, OHARA H, TAKAHASHI K, et al. SO2 oxidation over the V2O5/TiO2 SCR catalyst[J]. Catalysis Letters, 2001, 73(1): 79-83. |
32 | 纪培栋. SCR催化剂SO2氧化机理及调控机制研究[D]. 杭州: 浙江大学, 2016. |
JI Peidong. Research of SO2 oxidation over SCR catalyst and regulatory mechanism[D]. Hangzhou: Zhejiang University, 2016. | |
33 | DUNN J P, KOPPULA P R, STENGER H G, et al. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts[J]. Applied Catalysis B: Environmental, 1998, 19(2): 103-117. |
34 | 刘炜, 孙奇峰, 冯艳婷. V-W/Ti催化剂活性粉体制备研究[J]. 化工管理, 2016(26): 244. |
LIU Wei, SUN Qifeng, FENG Yanting. Preparation of V-W/Ti catalyst active powder[J]. Chemical Enterprise Management, 2016(26): 244. | |
35 | 马双忱, 金鑫, 孙云雪, 等. SCR烟气脱硝过程硫酸氢铵的生成机理与控制[J]. 热力发电, 2010, 39(8): 12-17. |
MA Shuangchen, JIN Xin, SUN Yunxue, et al. The formation mechanism of ammonium bisulfate in SCR flue gas denitrification process and control thereof[J]. Thermal Power Generation, 2010, 39(8): 12-17. | |
36 | 朱繁, 何洪, 李坚, 等. V2O5-MoO3/TiO2催化剂的NO x 选择性催化还原及SO2氧化活性[J]. 工业催化, 2012, 20(9): 71-76. |
ZHU Fan, HE Hong, LI Jian, et al. Activities of NO selective catalytic reduction and SO2 oxidation over V2O5-MoO3/TiO2 catalysts[J]. Industrial Catalysis, 2012, 20(9): 71-76. | |
37 | KWON D W, PARK K H, HONG S C. Enhancement of SCR activity and SO2 resistance on VO x /TiO2 catalyst by addition of molybdenum[J]. Chemical Engineering Journal, 2016, 284: 315-324. |
38 | CHOO S T, YIM S D, NAM I S, et al. Effect of promoters including WO3 and BaO on the activity and durability of V2O5/sulfated TiO2 catalyst for NO reduction by NH3 [J]. Applied Catalysis B: Environmental, 2003, 44(3): 237-252. |
39 | 王博, 边瑶, 封硕, 等. 铌元素改性V2O5-WO3/TiO2催化剂降低脱硝过程SO2的氧化率[J]. 燃料化学学报, 2022, 50(4): 503-512. |
WANG Bo, BIAN Yao, FENG Shuo, et al. Modification of the V2O5-WO3/TiO2 catalyst with Nb to reduce its activity for SO2 oxidation during the selective catalytic reduction of NO x [J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 503-512. | |
40 | SAZONOVA N N, TSYKOZA L T, SIMAKOV A V, et al. Relationship between sulfur dioxide oxidation and selective catalytic NO reduction by ammonia on V2O5-TiO2 catalysts doped with WO3 and Nb2O5 [J]. Reaction Kinetics and Catalysis Letters, 1994, 52(1):101-106. |
41 | 李文华, 尹顺利, 金震楠, 等. 钒基脱硝催化剂SO2氧化率控制研究进展[J]. 洁净煤技术, 2019, 25(5): 8-16. |
LI Wenhua, YIN Shunli, JIN Zhennan, et al. Research progress on the control of SO2 oxidation rate over vanadium based denitrification catalyst[J]. Clean Coal Technology, 2019, 25(5): 8-16. | |
42 | 李锋, 於承志, 张朋, 等. 低SO2氧化率脱硝催化剂的开发[J]. 电力科技与环保, 2010, 26(4): 18-21. |
LI Feng, YU Chengzhi, ZHANG Peng, et al. Development of SCR DeNO x catalyst with low SO2 oxidation[J]. Electric Power Technology and Environmental Protection, 2010, 26(4): 18-21. | |
43 | SVACHULA J, ALEMANY L J, FERLAZZO N, et al. Oxidation of sulfur dioxide to sulfur trioxide over honeycomb deNO x ing catalysts[J]. Industrial & engineering chemistry research, 1993, 32(5): 826-834. |
44 | SCHWÄMMLE T, BERTSCHE F, HARTUNG A, et al. Influence of geometrical parameters of honeycomb commercial SCR-deNO x -catalysts on deNO x -activity, mercury oxidation and SO2/SO3-conversion [J]. Chemical Engineering Journal, 2013, 222: 274-281. |
45 | 赵大周, 何胜, 司风琪, 等. 选择性催化还原单孔催化剂数值模拟[J]. 热力发电, 2016, 45(4): 100-105. |
ZHAO Dazhou, HE Sheng, SI Fengqi, et al. Numerical simulation on single channel catalyst in selective catalytic reduction system[J]. Thermal Power Generation, 2016, 45(4): 100-105. | |
46 | 张静, 陈付国, 袁鹏, 等. 薄壁脱硝催化剂: CN201921694U[P]. 2011-08-10. |
ZHANG Jing, CHEN Fuguo, YUAN Peng. Thin-wall denitration catalyst: CN201921694U[P]. 2011-08-10. | |
47 | 唐坚, 赵喆, 路光杰, 等. 低二氧化硫氧化率的薄壁SCR脱硝催化剂及其制备方法: CN108187657A[P]. 2018-06-22. |
TANG Jian, ZHAO Zhe, LU Guangjie, et al. Thin wall SCR denitration catalyst with low oxidation rate of sulfur dioxide and its preparation method: CN108187657A[P]. 2018-06-22. | |
48 | 贾媛媛, 巫树锋, 刘光利, 等. 一种降低SO2氧化率脱硝催化剂及其制备方法: CN107175117A[P]. 2017-09-19. |
JIA Yuanyuan, WU Shufeng, Liu Guangli, et al. Denitration catalyst for reducing SO2 oxidation rate and preparation method thereof: CN107175117A[P]. 2017-09-19. | |
49 | KANG T H, YOUN S, KIM D H. Improved catalytic performance and resistance to SO2 over V2O5-WO3/TiO2 catalyst physically mixed with Fe2O3 for low-temperature NH3-SCR[J]. Catalysis Today, 2021, 376: 95-103. |
50 | LIU Zhiming, YI Yang, ZHANG Shaoxuan, et al. Selective catalytic reduction of NO x with NH3 over Mn-Ce mixed oxide catalyst at low temperatures[J]. Catalysis Today, 2013, 216: 76-81. |
51 | LI Chenxu, SHEN Meiqing, WANG Jianqiang, et al. New insights into the promotional mechanism of ceria for activity and ammonium bisulfate resistance over V/WTi catalyst for selective catalytic reduction of NO with NH3 [J]. Applied Catalysis A: General, 2018, 560: 153-164. |
52 | LI Chenxu, SHEN Meiqing, WANG Jianqiang, et al. New insights into the role of WO3 in improved activity and ammonium bisulfate resistance for NO reduction with NH3 over V-W/Ce/Ti catalyst[J]. Industrial & Engineering Chemistry Research, 2018, 57(25): 8424-8435. |
53 | XU Wenqing, GAO Lei, YANG Yang, et al. Effects of MoO3 and CeO2 doping on the decomposition and reactivity of NH4HSO4 on V2O5/TiO2 catalysts[J]. Environmental Science and Pollution Research International, 2020, 27(24): 30243-30253. |
54 | TONG Tong, CHEN Jianjun, XIONG Shangchao, et al. Vanadium-density-dependent thermal decomposition of NH4HSO4 on V2O5/TiO2 SCR catalysts[J]. Catalysis Science & Technology, 2019, 9(14): 3779-3787. |
55 | ZHU Zhenping, NIU Hongxian, LIU Zhenyu, et al. Decomposition and reactivity of NH4HSO4 on V2O5/AC catalysts used for NO reduction with ammonia[J]. Journal of Catalysis, 2000, 195(2): 268-278. |
56 | QU Ruiyang, YE Dong, ZHENG Chenghang, et al. Exploring the role of V2O5 in the reactivity of NH4HSO4 with NO on V2O5/TiO2 SCR catalysts[J]. RSC Advances, 2016, 6(104): 102436-102443. |
57 | KOBAYASHI M, KUMA R, MASAKI S, et al. TiO2-SiO2 and V2O5/TiO2-SiO2 catalyst: physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3 [J]. Applied Catalysis B: Environmental, 2005, 60(3/4): 173-179. |
58 | 王献忠, 吴彦霞, 陈鑫, 等. SiO2掺杂对V-Mo/TiO2催化剂脱硝性能的影响[J]. 石油炼制与化工, 2020, 51(1): 31-36. |
WANG Xianzhong, WU Yanxia, CHEN Xin, et al. Effect of SiO2 doping on denitration performance of V-Mo/TiO2 catalyst[J]. Petroleum Processing and Petrochemicals, 2020, 51(1): 31-36. | |
59 | YE Dong, QU Ruiyang, LIU Shaojun, et al. New insights into the decomposition behavior of NH4HSO4 on the SiO2-decorated SCR catalyst and its enhanced SO2-resistant ability[J]. ACS Omega, 2019, 4(3): 4927-4935. |
60 | KUMA R, KITANO T, TSUJIGUCHI T, et al. Deactivation mechanism and enhanced durability of V2O5/TiO2-SiO2-MoO3 catalysts for NH3-SCR in the presence of SO2 [J]. ChemCatChem, 2020, 12(23): 5938-5947. |
61 | ZHENG Chengqiang, CHENG Teng, YANG Linjun, et al. Effect of SiO2 addition on NH4HSO4 decomposition and SO2 poisoning over V2O5-MoO3/TiO2-CeO2 catalyst[J]. Journal of Environmental Sciences, 2020, 91: 279-291. |
62 | YU Jie, ZHANG Esong, WANG Lele, et al. The interaction of NH4HSO4 with vanadium-titanium catalysts modified with molybdenum and tungsten[J]. Energy & Fuels, 2020, 34(2): 2107-2116. |
63 | YE Dong, QU Ruiyang, SONG Hao, et al. Investigation of the promotion effect of WO3 on the decomposition and reactivity of NH4HSO4 with NO on V2O5-WO3/TiO2 SCR catalysts[J]. RSC Advances, 2016, 6(60): 55584-55592. |
64 | YE Dong, QU Ruiyang, ZHENG Chenghang, et al. Mechanistic investigation of enhanced reactivity of NH4HSO4 and NO on Nb- and Sb-doped VW/Ti SCR catalysts[J]. Applied Catalysis A: General, 2018, 549: 310-319. |
65 | MORETTI A L, TRISCORI R J, RITZENTHALER D P. A system approach to SO3 mitigation[C]//Combined Power Plant Air Pollutant Control Mega Symposium, Baltimore, Maryland, USA, 2006: 1-7. |
[1] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[2] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[3] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[4] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[5] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[6] | 李佳, 樊星, 陈莉, 李坚. 硝酸生产尾气中NO x 和N2O联合脱除技术研究进展[J]. 化工进展, 2023, 42(7): 3770-3779. |
[7] | 张巍, 秦川, 谢康, 周运河, 董梦瑶, 李婕, 汤云灏, 马英, 宋健. H2-SCR改性铂系催化剂低温脱硝的应用及性能强化挑战[J]. 化工进展, 2023, 42(6): 2954-2962. |
[8] | 马源, 肖晴月, 岳君容, 崔彦斌, 刘姣, 许光文. CeO2-Al2O3复合载体负载Ni基催化剂催化CO x 共甲烷化性能[J]. 化工进展, 2023, 42(5): 2421-2428. |
[9] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
[10] | 王嘉, 彭冲, 唐磊, 陆安慧. 渣油加氢催化剂活性相结构调控及对反应性能影响[J]. 化工进展, 2023, 42(4): 1811-1821. |
[11] | 周皞, 张恒, 温妮妮, 王旭瑞, 徐璐, 李玮, 苏亚欣. Cu-SAPO-44分子筛的制备及其C3H6-SCR脱硝性能[J]. 化工进展, 2023, 42(3): 1373-1382. |
[12] | 宋玉昆, 王国刚, 张新功, 刘大阔, 张金庆, 林瀚. SNAR: 一种新型非氨基还原除酸脱硝工艺技术[J]. 化工进展, 2022, 41(S1): 606-612. |
[13] | 汪兴, 赵子龙, 张小山, 王宏杰, 董文艺, 陈慧慧. 制备条件对生物炭载铁催化剂催化破络Ni-EDTA性能及活性组分浸出的影响[J]. 化工进展, 2022, 41(9): 4831-4839. |
[14] | 曾军建, 赵基钢. 乙炔氢氯化金基无汞催化剂的研究进展[J]. 化工进展, 2022, 41(7): 3589-3596. |
[15] | 唐金琼, 孔勇, 沈晓冬. 碳化物衍生碳的制备及其应用研究进展[J]. 化工进展, 2022, 41(2): 791-802. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |