化工进展 ›› 2021, Vol. 40 ›› Issue (9): 4782-4790.DOI: 10.16085/j.issn.1000-6613.2021-0452
刘嘉辉1(), 孙道安2(), 杜咏梅2, 李春迎2, 刘昭铁1, 吕剑2()
收稿日期:
2021-03-07
修回日期:
2021-05-31
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
孙道安,吕剑
作者简介:
刘嘉辉(1997—),男,硕士研究生,研究方向为碳氢化合物水蒸汽重整制氢。E-mail:基金资助:
LIU Jiahui1(), SUN Dao’an2(), DU Yongmei2, LI Chunying2, LIU Zhaotie1, LYU Jian2()
Received:
2021-03-07
Revised:
2021-05-31
Online:
2021-09-05
Published:
2021-09-13
Contact:
SUN Dao’an,LYU Jian
摘要:
氢能是一种清洁的二次能源,具有绿色环保、零污染、零碳排放等优点。芳烃蒸汽重整制氢原料来源广、单位体积原料产氢量高,在重油焦油清除升级、便携式移动制氢等领域极具应用价值,其核心在于高性能催化剂的开发。文章首先从芳烃重整反应特性、反应网络、动力学模型构建和吸附解离等方面对其反应动力学及机理进行了概述,认为采用热力学理论计算、先进的原位表征技术和严密的逻辑论证实验等综合手段是加深反应动力学和机理认知的关键;其次,按照催化剂组成分类,评述了不同活性组分、载体及助剂的特点,基于镍基双金属活性组分的协同效应、钙钛矿载体的强储/释氧能力和碱性助剂的酸调控作用,指出碱性助剂改性的负载型镍基双金属钙钛矿催化剂是其发展方向。
中图分类号:
刘嘉辉, 孙道安, 杜咏梅, 李春迎, 刘昭铁, 吕剑. 芳烃蒸汽催化重整制氢研究进展[J]. 化工进展, 2021, 40(9): 4782-4790.
LIU Jiahui, SUN Dao’an, DU Yongmei, LI Chunying, LIU Zhaotie, LYU Jian. Progress on hydrogen production from catalytic steam reforming of aromatic hydrocarbons[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4782-4790.
反应物 | 密度(20℃)/g·cm-3 | 理论产氢量/mmol·mL-1 |
---|---|---|
乙酸 | 1.050 | 70.0 |
二甲醚 | 0.666 | 86.7 |
乙醇 | 0.789 | 102.8 |
正十二烷 | 0.750 | 162.9 |
苯 | 0.880 | 169.0 |
甲苯 | 0.866 | 169.2 |
萘 | 1.145 | 214.4 |
表1 单位体积原料重整理论产氢量
反应物 | 密度(20℃)/g·cm-3 | 理论产氢量/mmol·mL-1 |
---|---|---|
乙酸 | 1.050 | 70.0 |
二甲醚 | 0.666 | 86.7 |
乙醇 | 0.789 | 102.8 |
正十二烷 | 0.750 | 162.9 |
苯 | 0.880 | 169.0 |
甲苯 | 0.866 | 169.2 |
萘 | 1.145 | 214.4 |
制氢方式 | 实验室实际产氢量/kg H2·(kg 原料)-1 | 制氢成本/CNY·kg-1 |
---|---|---|
甲烷重整 | 0.313 | 14① |
甲苯重整② | 0.196 | 20~25③ |
碱式电解水 | — | 40 |
表2 典型制氢方式成本对比
制氢方式 | 实验室实际产氢量/kg H2·(kg 原料)-1 | 制氢成本/CNY·kg-1 |
---|---|---|
甲烷重整 | 0.313 | 14① |
甲苯重整② | 0.196 | 20~25③ |
碱式电解水 | — | 40 |
反应物 | 催化剂 | 反应条件① | 积炭量② | 芳烃转化率/% | H2收率③/% | 文献 |
---|---|---|---|---|---|---|
苯 | NiO/泡沫陶瓷 | 750℃,WHSV=5.6h-1,S/C=2.0 | — | 85.5 | 59 | [ |
甲苯 | Ni/CGA-1d | 800℃,WHSV=2.6h-1,S/C=2.0 | 0.034gcoke·h·gcat-1 | 91.5 | 58.2 | [ |
甲苯 | Ni/MgO-Al2O3 | 650~800℃,WHSV=5.2h-1,S/C=1.7 | 2.55~4.86mg·(g Cfeed)-1 | 95.4 | 69 | [ |
甲苯 | Ni/La0.7Sr0.3AlO3-δ | 600℃,WHSV=1.84h-1,S/C=2.0 | 9.3mg·gcat-1 | 53.0 | 49.9 | [ |
甲苯 | Ni-K/La0.7Sr0.3AlO3-δ | 650℃,WHSV=3.73h-1,S/C=2.0 | 7.3mg·gcat-1 | 100 | 79 | [ |
甲苯 | Ni-Fe/zeolite | 800℃,WHSV=1.0~2.3h-1,S/C=2.0 | — | 74 | 65 | [ |
萘 | Ni/Ce0.75Zr0.25-xMnxO2 | 700℃,GHSV=20000h-1,S/C=2.0 | (1.1±0.3)mg·gcat-1 | 100(120min) | — | [ |
表3 代表性芳烃催化重整反应条件及性能
反应物 | 催化剂 | 反应条件① | 积炭量② | 芳烃转化率/% | H2收率③/% | 文献 |
---|---|---|---|---|---|---|
苯 | NiO/泡沫陶瓷 | 750℃,WHSV=5.6h-1,S/C=2.0 | — | 85.5 | 59 | [ |
甲苯 | Ni/CGA-1d | 800℃,WHSV=2.6h-1,S/C=2.0 | 0.034gcoke·h·gcat-1 | 91.5 | 58.2 | [ |
甲苯 | Ni/MgO-Al2O3 | 650~800℃,WHSV=5.2h-1,S/C=1.7 | 2.55~4.86mg·(g Cfeed)-1 | 95.4 | 69 | [ |
甲苯 | Ni/La0.7Sr0.3AlO3-δ | 600℃,WHSV=1.84h-1,S/C=2.0 | 9.3mg·gcat-1 | 53.0 | 49.9 | [ |
甲苯 | Ni-K/La0.7Sr0.3AlO3-δ | 650℃,WHSV=3.73h-1,S/C=2.0 | 7.3mg·gcat-1 | 100 | 79 | [ |
甲苯 | Ni-Fe/zeolite | 800℃,WHSV=1.0~2.3h-1,S/C=2.0 | — | 74 | 65 | [ |
萘 | Ni/Ce0.75Zr0.25-xMnxO2 | 700℃,GHSV=20000h-1,S/C=2.0 | (1.1±0.3)mg·gcat-1 | 100(120min) | — | [ |
1 | 王治斌, 孙来芝, 陈雷, 等. 生物油水蒸气催化重整制氢研究进展[J]. 化工进展, 2021, 40(1): 151-163. |
WANG Z B, ZHANG L Z, CHEN L, et al. Progress in hydrogen production by steam catalytic reforming of bio-oil[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 151-163. | |
2 | 乔韦军, 肖国鹏, 张磊, 等. 甲醇水蒸气重整制氢CuO/La1-xCexCrO3催化剂[J]. 燃料化学学报, 2021, 49(2): 205-210. |
QIAO Weijun, XIAO Guopeng, ZHANG Lei, et al. Catalytic performance of CuO/La1-xCexCrO3 in the steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 205-210. | |
3 | 刘太楷, 邓春明, 张亚鹏. 电解水制氢发展概况之一: 碱式电解水[J]. 材料研究与应用, 2019, 13(4): 339-346. |
LIU Taikai, DENG Chunming, ZHANG Yapeng. Development of hydrogen generation via water electrolysis Ⅰ: Alkaline water electrolysis[J]. Materials Research and Application, 2019, 13(4): 339-346. | |
4 | SARıOĞLAN A. Tar removal on dolomite and steam reforming catalyst: benzene, toluene and xylene reforming[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8133-8142. |
5 | QIAN K Z, KUMAR A. Catalytic reforming of toluene and naphthalene (model tar) by char supported nickel catalyst[J]. Fuel, 2017, 187: 128-136. |
6 | GAO N B, WANG X, LI A M, et al. Hydrogen production from catalytic steam reforming of benzene as tar model compound of biomass gasification[J]. Fuel Processing Technology, 2016, 148: 380-387. |
7 | LU M, XIONG Z H, FANG K J, et al. Steam reforming of toluene over nickel catalysts supported on coal gangue ash[J]. Renewable Energy, 2020, 160: 385-395. |
8 | JIAO Y, ZHANG J, DU Y M, et al. Hydrogen-rich syngas production by toluene reforming in a microchannel reactor coated with Ni/MgO-Al2O3 multifunctional catalysts[J]. Industrial & Engineering Chemistry Research, 2019, 58(43): 19794-19802. |
9 | TAKISE K, IMORI M, MUKAI D, et al. Effect of catalyst structure on steam reforming of toluene over Ni/La0.7Sr0.3AlO3-δ catalyst[J]. Applied Catalysis A: General, 2015, 489: 155-161. |
10 | ZHANG Z H, OU Z L, QIN C L, et al. Roles of alkali/alkaline earth metals in steam reforming of biomass tar for hydrogen production over perovskite supported Ni catalysts[J]. Fuel, 2019, 257: 116032. |
11 | AHMED T, XIU S N, WANG L J, et al. Investigation of Ni/Fe/Mg zeolite-supported catalysts in steam reforming of tar using simulated-toluene as model compound[J]. Fuel, 2018, 211: 566-571. |
12 | BAMPENRAT A, MEEYOO V, KITIYANAN B, et al. Naphthalene steam reforming over Mn-doped CeO2-ZrO2 supported nickel catalysts[J]. Applied Catalysis A: General, 2010, 373(1/2): 154-159. |
13 | DU Z Y, ZHANG Z H, XU C, et al. Low-temperature steam reforming of toluene and biomass tar over biochar-supported Ni nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3111-3119. |
14 | ZOU X H, CHEN T H, ZHANG P, et al. High catalytic performance of Fe-Ni/palygorskite in the steam reforming of toluene for hydrogen production[J]. Applied Energy, 2018, 226: 827-837. |
15 | NORINAGA K, SAKURAI Y, SATO R, et al. Numerical simulation of thermal conversion of aromatic hydrocarbons in the presence of hydrogen and steam using a detailed chemical kinetic model[J]. Chemical Engineering Journal, 2011, 178: 282-290. |
16 | KAISALO N, SIMELL P, LEHTONEN J. Benzene steam reforming kinetics in biomass gasification gas cleaning[J]. Fuel, 2016, 182: 696-703. |
17 | OH G, PARK S Y, SEO M W, et al. Ni/Ru-Mn/Al2O3 catalysts for steam reforming of toluene as model biomass tar[J]. Renewable Energy, 2016, 86: 841-847. |
18 | LU M, XIONG Z H, FANG K J, et al. Effect of promoters on steam reforming of toluene over a Ni-based catalyst supported on coal gangue ash[J]. ACS Omega, 2020, 5(41): 26335-26346. |
19 | MEI D H, LEBARBIER V M, ROUSSEAU R, et al. Comparative investigation of benzene steam reforming over spinel supported Rh and Ir catalysts[J]. ACS Catalysis, 2013, 3(6): 1133-1143. |
20 | GHADAMI YAZDI M, MOUD P H, MARKS K, et al. Naphthalene on Ni(111): experimental and theoretical insights into adsorption, dehydrogenation, and carbon passivation[J]. The Journal of Physical Chemistry C, 2017, 121(40): 22199-22207. |
21 | DE CASTRO T P, SILVEIRA E B, RABELO-NETO R C, et al. Study of the performance of Pt/Al2O3 and Pt/CeO2/Al2O3 catalysts for steam reforming of toluene, methane and mixtures[J]. Catalysis Today, 2018, 299: 251-262. |
22 | ZHOU S Y, CHEN Z Z, GONG H J, et al. Low-temperature catalytic steam reforming of toluene as a biomass tar model compound over three-dimensional ordered macroporous Ni-Pt/Ce1-xZrxO2 catalysts[J]. Applied Catalysis A: General, 2020, 607: 117859. |
23 | MUKAI D, MURAI Y, HIGO T, et al. Effect of Pt addition to Ni/La0.7Sr0.3AlO3-δ catalyst on steam reforming of toluene for hydrogen production[J]. Applied Catalysis A: General, 2014, 471: 157-164. |
24 | TAKISE K, HIGO T, MUKAI D, et al. Highly active and stable Co/La0.7Sr0.3AlO3-δ catalyst for steam reforming of toluene[J]. Catalysis Today, 2016, 265: 111-117. |
25 | SUGIURA Y, MUKAI D, MURAI Y, et al. Oxidation resistance of Ni/La0.7Sr0.3AlO3-δ catalyst for steam reforming of model aromatic hydrocarbon[J]. International Journal of Hydrogen Energy, 2013, 38(19): 7822-7829. |
26 | FURUSAWA T, SAITO K, KORI Y, et al. Steam reforming of naphthalene/benzene with various types of Pt- and Ni-based catalysts for hydrogen production[J]. Fuel, 2013, 103: 111-121. |
27 | 赵效勇, 闫常峰, 张亮. Ni/CeO2-ZrO2@SiO2核壳结构型催化剂对甲苯催化重整研究[J]. 新能源进展, 2017, 5(4): 272-278. |
ZHAO Xiaoyong, YAN Changfeng, ZHANG Liang. Catalytic activity of Ni/CeO2-ZrO2@SiO2 core-shell structure for steam reforming of toluene[J]. Advances in New and Renewable Energy, 2017, 5(4): 272-278. | |
28 | BELBESSAI S, ACHOURI I E, BENYOUSSEF E H, et al. Toluene steam reforming using nickel based catalysts made from mining residues[J]. Catalysis Today, 2021, 365: 111-121. |
29 | WANG X B, YANG S Q, XU C, et al. Effect of boron doping on the performance of Ni/biochar catalysts for steam reforming of toluene as a tar model compound[J]. Journal of Analytical and Applied Pyrolysis, 2021, 155: 105033. |
30 | HU S, HE L M, WANG Y, et al. Effects of oxygen species from Fe addition on promoting steam reforming of toluene over Fe-Ni/Al2O3 catalysts[J]. International Journal of Hydrogen Energy, 2016, 41(40): 17967-17975. |
31 | 何立模, 胡松, 汪一, 等. 改性镍基催化剂催化甲苯重整与积炭特性研究[J]. 工程热物理学报, 2016, 37(5): 1093-1099. |
HE Limo, HU Song, WANG Yi, et al. Catalytic performance and coke characterization over modified Ni-based catalysts for steam reforming of toluene[J]. Journal of Engineering Thermophysics, 2016, 37(5): 1093-1099. | |
32 | MENG J G, ZHAO Z L, WANG X B, et al. Steam reforming and carbon deposition evaluation of phenol and naphthalene used as tar model compounds over Ni and Fe olivine-supported catalysts[J]. Journal of the Energy Institute, 2019, 92(6): 1765-1778. |
33 | FERELLA F, STOEHR J, MICHELIS I D, et al. Zirconia and alumina based catalysts for steam reforming of naphthalene[J]. Fuel, 2013, 105: 614-629. |
34 | 陶君, 陆强, 冉泽朋, 等. Ni-CeO2/γ-Al2O3催化甲苯水蒸气重整的实验研究[J]. 可再生能源, 2014, 32(10): 1539-1543. |
TAO Jun, LU Qiang, RAN Zepeng, et al. Experimental research on catalytic steam reforming of toluene using Ni-CeO2/γ-Al2O3 catalysts[J]. Renewable Energy Resources, 2014, 32(10): 1539-1543. | |
35 | HE L M, HU S, JIANG L, et al. Carbon nanotubes formation and its influence on steam reforming of toluene over Ni/Al2O3 catalysts: roles of catalyst supports[J]. Fuel Processing Technology, 2018, 176: 7-14. |
36 | 卢雯, 孔猛, 杨琦, 等. 载体对镍基催化剂及其甲苯水蒸气重整性能的影响[J]. 化学反应工程与工艺, 2012, 28(3): 238-243. |
LU Wen, KONG Meng, YANG Qi, et al. Influence of support on catalytic behavior of Ni-based catalysts in steam reforming of toluene[J]. Chemical Reaction Engineering and Technology, 2012, 28(3): 238-243. | |
37 | SILVEIRA E B, RABELO-NETO R C, NORONHA F B. Steam reforming of toluene, methane and mixtures over Ni/ZrO2 catalysts[J]. Catalysis Today, 2017, 289: 289-301. |
38 | ABOU RACHED J, HAYEK C EL, DAHDAH E, et al. Ni based catalysts promoted with cerium used in the steam reforming of toluene for hydrogen production[J]. International Journal of Hydrogen Energy, 2017, 42(17): 12829-12840. |
39 | CLAUDE V, MAHY J G, GEENS J, et al. Synthesis of Ni/γ-Al2O3-SiO2 catalysts with different silicon precursors for the steam toluene reforming[J]. Microporous and Mesoporous Materials, 2019, 284: 304-315. |
40 | 刘晓刚, 魏波, 史芸菲, 等. La1-xLixMnO3钙钛矿催化剂同时消除NO和碳烟催化性能[J]. 化工学报, 2020, 71(3): 1053-1059. |
LIU Xiaogang, WEI Bo, SHI Yunfei, et al. Simultaneous removal of NO and soot over La1-xLixMnO3 perovskite catalysts[J]. CIESC Journal, 2020, 71(3): 1053-1059. | |
41 | MUKAI D, TOCHIYA S, MURAI Y, et al. Role of support lattice oxygen on steam reforming of toluene for hydrogen production over Ni/La0.7Sr0.3AlO3-δ catalyst[J]. Applied Catalysis A: General, 2013, 453: 60-70. |
42 | SEKINE Y, MUKAI D, MURAI Y, et al. Steam reforming of toluene over perovskite-supported Ni catalysts[J]. Applied Catalysis A: General, 2013, 451: 160-167. |
43 | LIU C L, CHEN D, CAO Y, et al. Catalytic steam reforming of in situ tar from rice husk over MCM-41 supported LaNiO3 to produce hydrogen rich syngas[J]. Renewable Energy, 2020, 161: 408-418. |
44 | TANG W, CAO J P, YANG F L, et al. Highly active and stable HF acid modified HZSM-5 supported Ni catalysts for steam reforming of toluene and biomass pyrolysis tar[J]. Energy Conversion and Management, 2020, 212: 112799. |
45 | BIZKARRA K, BARRIO V L, GARTZIA-RIVERO L, et al. Hydrogen production from a model bio-oil/bio-glycerol mixture through steam reforming using zeolite L supported catalysts[J]. International Journal of Hydrogen Energy, 2019, 44(3): 1492-1504. |
46 | 冉泽朋, 陶君, 陆强, 等. Ni-CeO2/SBA-15电催化甲苯水蒸气重整的实验研究[J]. 新能源进展, 2014, 2(6): 407-412. |
RAN Zepeng, TAO Jun, LU Qiang, et al. Electric current enhanced catalytic steam reforming of toluene with Ni-CeO2/SBA-15 catalyst[J]. Advances in New and Renewable Energy, 2014, 2(6): 407-412. | |
47 | HIGO T, SAITO H, OGO S, et al. Promotive effect of Ba addition on the catalytic performance of Ni/LaAlO3 catalysts for steam reforming of toluene[J]. Applied Catalysis A: General, 2017, 530: 125-131. |
48 | ASHOK J, KAWI S. Steam reforming of toluene as a biomass tar model compound over CeO2 promoted Ni/CaO-Al2O3 catalytic systems[J]. International Journal of Hydrogen Energy, 2013, 38(32): 13938-13949. |
49 | BAMPENRAT A, MEEYOO V, KITIYANAN B, et al. Naphthalene steam reforming over Mn-doped CeO2-ZrO2 supported nickel catalysts[J]. Applied Catalysis A: General, 2010, 373(1/2): 154-159. |
50 | HEO D H, LEE R, HWANG J H, et al. The effect of addition of Ca, K and Mn over Ni-based catalyst on steam reforming of toluene as model tar compound[J]. Catalysis Today, 2016, 265: 95-102. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[14] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[15] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |