化工进展 ›› 2021, Vol. 40 ›› Issue (9): 4791-4805.DOI: 10.16085/j.issn.1000-6613.2021-0503
收稿日期:
2021-03-12
修回日期:
2021-05-25
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
李芳芹
作者简介:
李芳芹(1976—),副教授,硕士生导师,研究方向为清洁煤燃烧技术及污染物控制。E-mail:基金资助:
LI Fangqin(), SUN Chenhao, REN Jianxing, WU Jiang, CHEN Linfeng, LI Kejun
Received:
2021-03-12
Revised:
2021-05-25
Online:
2021-09-05
Published:
2021-09-13
Contact:
LI Fangqin
摘要:
以污染物作为电子给体进行的光催化制氢体系代表着一种新型的现代水处理技术,在污染物被降解的同时还可以将太阳能转化为清洁的氢能,有效地缓解了环境污染和能源短缺两大难题。为此,本文结合光催化制氢协同污染物降解反应的机理,概述了近年来国内外在该方向上的主要研究成果,列举了几种常用的催化剂,分析了不同的操作参数,如污染物种类、催化剂类型和组分、催化剂的微观结构、催化剂投加量、pH、污染物浓度、溶液中存在的不同阴阳离子及其他共存物、反应温度以及光照强度对光催化降解率和产氢活性的影响。最后,指出了以污染物作为电子给体的光催化水处理技术在光催化材料的选择上依然面临种类偏少、产氢效率偏低的挑战,并且在反应影响因素的探究上仍存在不充分、不全面的问题。同时,评述了将多项工艺结合起来的多单元水处理系统是未来水处理领域的一个主流模式。
中图分类号:
李芳芹, 孙辰豪, 任建兴, 吴江, 陈林峰, 李可君. 以污染物作为电子给体的新型光催化制氢体系的研究进展[J]. 化工进展, 2021, 40(9): 4791-4805.
LI Fangqin, SUN Chenhao, REN Jianxing, WU Jiang, CHEN Linfeng, LI Kejun. Research progress of novel photocatalytic hydrogen production system with pollutants as electron donors[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4791-4805.
1 | MILLER Eric L, THOMPSON Simon T, RANDOLPH Katie, et al. US department of energy hydrogen and fuel cell technologies perspectives[J]. MRS Bulletin, 2020, 45: 57-64. |
2 | BONCIU F. The European Union hydrogen strategy as a significant step towards a circular economy[J]. Romanian Journal of European Affairs, 2020, 20(2): 36-48. |
3 | 丁振森, 王佳, 姚占辉, 等. 多视角下中国氢能与燃料电池电动汽车发展研究[J]. 中国汽车, 2020, 30(9): 32-37. |
DING Zhensen, WANG Jia, YAO Zhanhui, et al. Research on the development of hydrogen energy and fuel cell electric vehicles in China from different perspectives[J]. China Auto, 2020, 30(9): 32-37. | |
4 | 黄格省, 李锦山, 魏寿祥, 等. 化石原料制氢技术发展现状与经济性分析[J]. 化工进展, 2019, 38(12): 5217-5224. |
HUANG Gesheng, LI Jinshan, WEI Shouxiang, et al. Status and economic analysis of hydrogen production technology from fossil raw materials[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5217-5224. | |
5 | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
6 | 梁可心, 徐芸菲, 许佩瑶, 等. 复合TiO2纳米管材料光催化裂解水产氢研究进展[J]. 化工进展, 2017, 36(11): 4051-4056. |
LIANG Kexin, XU Yunfei, XU Peiyao, et al. Progress of photocatalytic water splitting for hydrogen production over TiO2 nanotube composite materials[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4051-4056. | |
7 | LI K X, ZENG Z X, YAN L S, et al. Fabrication of C/X-TiO2@C3N4 NTs (X = N, F, Cl) composites by using phenolic organic pollutants as raw materials and their visible-light photocatalytic performance in different photocatalytic systems[J]. Applied Catalysis B: Environmental, 2016, 187: 269-280. |
8 | PATSOURA A, KONDARIDES D I, VERYKIOS X E. Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen[J]. Catalysis Today, 2007, 124(3/4): 94-102. |
9 | KIM J, MONLLOR-SATOCA D, CHOI W. Simultaneous production of hydrogen with the degradation of organic pollutants using TiO2 photocatalyst modified with dual surface components[J]. Energy & Environmental Science, 2012, 5(6): 7647-7656. |
10 | SINGH R, DUTTA S. A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts[J]. Fuel, 2018, 220: 607-620. |
11 | KUMAR A, KHAN M, HE J H, et al. Recent developments and challenges in practical application of visible-light-driven TiO2-based heterojunctions for PPCP degradation: a critical review[J]. Water Research, 2020, 170: 115356. |
12 | 肖琳. 光催化污染物降解耦合光解水制氢[D]. 上海: 上海交通大学, 2008. |
XIAO Lin. Photocatalytic hydrogen production from water with simultaneous degration of pollutant[D]. Shanghai: Shanghai Jiaotong University, 2008. | |
13 | LI Y X, LYU G X, LI S B. Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2[J]. Applied Catalysis A: General, 2001, 214(2): 179-185. |
14 | 李越湘, 吕功煊, 李树本, 等. 污染物甲醛为电子给体Pt/TiO2光催化制氢[J]. 分子催化, 2002, 16(4): 241-246. |
LI Yuexiang, Gongxuan LYU, LI Shuben, et al. Photocatalytic hydrogen generation by pollutant formaldehyde as electron donor over Pt/TiO2[J]. Journal of Molecular Catalysis, 2002, 16(4): 241-246. | |
15 | 李越湘, 吕功煊, 李树本. Pt-TiO2光催化还原罗丹明B[J]. 分子催化, 2001, 15(4): 287-290. |
LI Yuexiang, Gongxuan LYU, LI Shuben. Photocatalytic reduction rhodamine B over Pt-TiO2[J]. Journal of Molecular Catalysis, 2001, 15(4): 287-290. | |
16 | 吴玉琪, 吕功煊, 李树本. Pt/TiO2光催化重整降解2-氯乙醇水溶液制氢[J]. 分子催化, 2004, 18(2): 125-130. |
WU Yuqi, Gongxuan LYU, LI Shuben. Hydrogen production by Pt/TiO2 photocatalytic reforming degradation of aqueous 2-chloroethanol[J]. Journal of Molecular Catalysis, 2004, 18(2): 125-130. | |
17 | LI M, LI Y X, PENG S Q, et al. Photocatalytic hydrogen generation using glycerol wastewater over Pt/TiO2[J]. Frontiers of Chemistry in China, 2009, 4(1): 32-38. |
18 | 尹忠环, 李越湘, 彭绍琴, 等. 污染物乙醇胺Pt/TiO2光催化制氢[J]. 分子催化, 2007, 21(2): 155-161. |
YIN Zhonghuan, LI Yuexiang, PENG Shaoqin, et al. Photocatalytic hydrogen generation in the presence of ethanolamines over Pt/TiO2[J]. Journal of Molecular Catalysis, 2007, 21(2): 155-161. | |
19 | 吴玉琪, 吕功煊, 李树本. 无氧条件下Pt/TiO2光催化重整降解一乙醇胺水溶液制氢[J]. 物理化学学报, 2004, 20(7): 755-758. |
WU Yuqi, Gongxuan LYU, LI Shuben. Hydrogen production by Pt/TiO2 anaerobic photocatalytic reforming degradation of aqueous monoethanolamine[J]. Acta Physico-Chimica Sinica, 2004, 20(7): 755-758. | |
20 | LI Y X, XIE Y Z, PENG S Q, et al. Photocatalytic hydrogen generation in the presence of chloroacetic acids over Pt/TiO2[J]. Chemosphere, 2006, 63(8): 1312-1318. |
21 | LI Y X, LYU G X, LI S B. Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy[J]. Chemosphere, 2003, 52(5): 843-850. |
22 | LI Y X, LYU G X, LI S B. Photocatalytic transformation of rhodamine B and its effect on hydrogen evolution over Pt/TiO2 in the presence of electron donors[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 152(1/2/3): 219-228. |
23 | YUZAWA H, MORI T, ITOH H, et al. Reaction mechanism of ammonia decomposition to nitrogen and hydrogen over metal loaded titanium oxide photocatalyst[J]. The Journal of Physical Chemistry C, 2012, 116(6): 4126-4136. |
24 | NEMOTO J, GOKAN N, UENO H, et al. Photodecomposition of ammonia to dinitrogen and dihydrogen on platinized TiO2 nanoparticules in an aqueous solution[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185(2/3): 295-300. |
25 | KLAUSON D, BUDARNAJA O, CASTELLANOS BELTRAN I, et al. Photocatalytic decomposition of humic acids in anoxic aqueous solutions producing hydrogen, oxygen and light hydrocarbons[J]. Environmental Technology, 2014, 35(17): 2237-2243. |
26 | KOZLOVA E A, VORONTSOV A V. Photocatalytic hydrogen evolution from aqueous solutions of organophosphorous compounds[J]. International Journal of Hydrogen Energy, 2010, 35(14): 7337-7343. |
27 | HU X, HU X J, PENG Q Q, et al. Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2[J]. Chemical Engineering Journal, 2020, 380: 122366. |
28 | CHEN J R, QIU F X, XU W Z, et al. Recent progress in enhancing photocatalytic efficiency of TiO2-based materials[J]. Applied Catalysis A: General, 2015, 495: 131-140. |
29 | RELI M, AMBROŽOVÁ N, ŠIHOR M, et al. Novel cerium doped titania catalysts for photocatalytic decomposition of ammonia[J]. Applied Catalysis B: Environmental, 2015, 178: 108-116. |
30 | 周美华, 李越湘. 剥离MoS2负载TiO2的制备与甘油水溶液光催化制氢[J]. 高校化学工程学报, 2017, 31(3): 609-617. |
ZHOU Meihua, LI Yuexiang. Preparation of exfoliated-MoS2 loaded TiO2 and its photocatalytic hydrogen production from aqueous glycerol solution[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(3): 609-617. | |
31 | LEE S S, BAI H W, LIU Z Y, et al. Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater[J]. Water Research, 2013, 47(12): 4059-4073. |
32 | PATSOURA A, KONDARIDES D I, VERYKIOS X E. Enhancement of photoinduced hydrogen production from irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes[J]. Applied Catalysis B: Environmental, 2006, 64(3/4): 171-179. |
33 | WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. |
34 | CAO S, LOW J, YU J, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials, 2015, 27(13): 2150-2176. |
35 | GONG Y T, LI M M, WANG Y. Carbon nitride in energy conversion and storage: recent advances and future prospects[J]. ChemSusChem, 2015, 8(6): 931-946. |
36 | ZHANG Gong, JI Qinghua, WU Zhang, et al. Facile “spot-heating” synthesis of carbon dots/carbon nitride for solar hydrogen evolution synchronously with contaminant decomposition[J]. Advanced Functional Materials, 2018, 28(14). DOI:10.1002/adfm.201706462. |
37 | ZENG Y X, LIU X, LIU C B, et al. Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2018, 224: 1-9. |
38 | JIANG X H, WANG L C, YU F, et al. Photodegradation of organic pollutants coupled with simultaneous photocatalytic evolution of hydrogen using quantum-dot-modified g-C3N4 catalysts under visible-light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12695-12705. |
39 | PAN J Q, DONG Z J, WANG B B, et al. The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g- C3N4 hollow core-shell nano-heterojunction[J]. Applied Catalysis B: Environmental, 2019, 242: 92-99. |
40 | NIE Y C, YU F, WANG L C, et al. Photocatalytic degradation of organic pollutants coupled with simultaneous photocatalytic H2 evolution over graphene quantum dots/Mn-N-TiO2/g-C3N4 composite catalysts: performance and mechanism[J]. Applied Catalysis B: Environmental, 2018, 227: 312-321. |
41 | LEI Z, YOU W, LIU M, et al. Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method[J]. Chemical Communications, 2003(17): 2142-2143. |
42 | HU X L, YU J C, GONG J M, et al. Rapid mass production of hierarchically porous ZnIn2S4 submicrospheres via a microwave-solvothermal process[J]. Crystal Growth & Design, 2007, 7(12): 2444-2448. |
43 | ZHANG G P, CHEN D Y, LI N J, et al. Preparation of ZnIn2S4 nanosheet-coated CdS nanorod heterostructures for efficient photocatalytic reduction of Cr(VI)[J]. Applied Catalysis B: Environmental, 2018, 232: 164-174. |
44 | 彭绍琴, 丁敏, 易婷, 等. 污染物甲胺为电子给体可见光下Pt/ZnIn2S4光催化制氢[J]. 分子催化, 2014, 28(5): 466-473. |
PENG Shaoqin, DING Min, YI Ting, et al. Photocatalytic hydrogen evolution in the presence of pollutant methylamines over Pt/ZnIn2S4 under visible light irradiation[J]. Journal of Molecular Catalysis, 2014, 28(5): 466-473. | |
45 | ZHANG S Q, WANG L L, LIU C B, et al. Photocatalytic wastewater purification with simultaneous hydrogen production using MoS2 QD-decorated hierarchical assembly of ZnIn2S4 on reduced graphene oxide photocatalyst[J]. Water Research, 2017, 121: 11-19. |
46 | HONEYCHURCH K, HART J. Voltammetric behavior of p-nitrophenol and its trace determination in human urine by liquid chromatography with a dual reductive mode electrochemical detection system[J]. Electroanalysis, 2007, 19(21): 2176-2184. |
47 | ZHU R S, TIAN F, YANG R J, et al. Z scheme system ZnIn2S4/RGO/BiVO4 for hydrogen generation from water splitting and simultaneous degradation of organic pollutants under visible light[J]. Renewable Energy, 2019, 139: 22-27. |
48 | ZHU R S, TIAN F, CAO G, et al. Construction of Z scheme system of ZnIn2S4/RGO/BiVO4 and its performance for hydrogen generation under visible light[J]. International Journal of Hydrogen Energy, 2017, 42(27): 17350-17361. |
49 | XU Q L, ZHANG L Y, CHENG B, et al. S-scheme heterojunction photocatalyst[J]. Chem, 2020, 6(7): 1543-1559. |
50 | LU D Z, WANG H M, ZHAO X N, et al. Highly efficient visible-light-induced photoactivity of Z-scheme g- C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1436-1445. |
51 | SHEN H Q, LIU G W, YAN X, et al. All-solid-state Z-scheme system of RGO-Cu2O/Fe2O3 for simultaneous hydrogen production and tetracycline degradation[J]. Materials Today Energy, 2017, 5: 312-319. |
52 | WEI Z D, LIU J Y, SHANGGUAN W F. A review on photocatalysis in antibiotic wastewater: pollutant degradation and hydrogen production[J]. Chinese Journal of Catalysis, 2020, 41(10): 1440-1450. |
53 | BAI S, WANG L M, CHEN X Y, et al. Chemically exfoliated metallic MoS2 nanosheets: a promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals[J]. Nano Research, 2015, 8(1): 175-183. |
54 | 彭惠琛, 彭绍琴, 李越湘. 污染物为电子给体Cd0.5Zn0.5S固溶体光催化分解水制氢[J]. 南昌大学学报(理科版), 2016, 40(5): 465-468. |
PENG Huichen, PENG Shaoqin, LI Yuexiang. Photocatalytic hydrogen evolution from water splitting using pollutants as electron donors over Cd0.5Zn0.5S solid solution[J]. Journal of Nanchang University (Natural Science), 2016, 40(5): 465-468. | |
55 | 郭丽君, 李瑞, 刘建新, 等. 半导体光催化分解水的析氢效率研究[J]. 化学进展, 2020, 32(1): 46-54. |
GUO Lijun, LI Rui, LIU Jianxin, et al. Study on hydrogen evolution efficiency of semiconductor photocatalysts for solar water splitting[J]. Progress in Chemistry, 2020, 32(1): 46-54. | |
56 | XIANG Q J, YU J G, JARONIEC M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites[J]. The Journal of Physical Chemistry C, 2011, 115(15): 7355-7363. |
57 | 李立业, 崔文权, 樊丽华, 等. K2La2Ti3O10光催化分解乙醇制氢[J]. 化工进展, 2010, 29(S1): 195-197. |
LI Liye, CUI Wenquan, FAN Lihua, et al. Hydrogen production by photocatalytic decomposition of ethanol with K2La2Ti3O10[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 195-197. | |
58 | LI Y, ZHANG D N, FENG X H, et al. Enhanced photocatalytic hydrogen production activity of highly crystalline carbon nitride synthesized by hydrochloric acid treatment[J]. Chinese Journal of Catalysis, 2020, 41(1): 21-30. |
59 | HE J, CHEN L, WANG F, et al. CdS nanowires decorated with ultrathin MoS2 nanosheets as an efficient photocatalyst for hydrogen evolution[J]. ChemSusChem, 2016, 9(6): 624-630. |
60 | LIU L, QI Y H, HU J S, et al. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core@shell Cu2O@g-C3N4 octahedra[J]. Applied Surface Science, 2015, 351: 1146-1154. |
61 | LI K X, ZENG Z X, YAN L S, et al. Fabrication of platinum-deposited carbon nitride nanotubes by a one-step solvothermal treatment strategy and their efficient visible-light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2015, 165: 428-437. |
62 | HUANG G C, XIAO Z T, ZHEN W Q, et al. Hydrogen production from natural organic matter via cascading oxic-anoxic photocatalytic processes: an energy recovering water purification technology[J]. Water Research, 2020, 175: 115684. |
63 | CAREY J H, LAWRENCE J, TOSINE H M. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination and Toxicology, 1976, 16(6): 697-701. |
64 | BYRNE C, SUBRAMANIAN G, PILLAI S C. Recent advances in photocatalysis for environmental applications[J]. Journal of Environmental Chemical Engineering, 2018, 6(3): 3531-3555. |
65 | KIM J, CHOI W. Hydrogen producing water treatment through solar photocatalysis[J]. Energy & Environmental Science, 2010, 3(8): 1042. |
66 | CHO Y J, MOON G H, KANAZAWA T, et al. Selective dual-purpose photocatalysis for simultaneous H2 evolution and mineralization of organic compounds enabled by a Cr2O3 barrier layer coated on Rh/SrTiO3[J]. Chemical Communications, 2016, 52(62): 9636-9639. |
67 | ZHANG W L, LI Y, WANG C, et al. Energy recovery during advanced wastewater treatment: simultaneous estrogenic activity removal and hydrogen production through solar photocatalysis[J]. Water Research, 2013, 47(3): 1480-1490. |
68 | XIE J, ZHANG H, LI S, et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution[J]. Advanced Materials, 2013, 25(40): 5807-5813. |
69 | DASKALAKI V M, ANTONIADOU M, LI PUMA G, et al. Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater[J]. Environmental Science & Technology, 2010, 44(19): 7200-7205. |
70 | CAO B, LI G S, LI H X. Hollow spherical RuO2@TiO2@Pt bifunctional photocatalyst for coupled H2 production and pollutant degradation[J]. Applied Catalysis B: Environmental, 2016, 194: 42-49. |
71 | TANG Shoufeng, WANG Zetao, YUAN Deling, et al. Enhanced photocatalytic performance of BiVO4 for degradation of methylene blue under LED visible light irradiation assisted by peroxymonosulfate[J]. International Journal of Electrochemical Science, 2020, 15: 2470-2480. |
72 | 冯宝瑞, 刘海成, 李阳, 等. Fe3O4@SiO2@TiO2-AC光催化降解水源水中腐殖酸[J]. 工业水处理, 2020, 40(8): 55-59, 74. |
FENG Baorui, LIU Haicheng, LI Yang, et al. Photocatalytic degradation of humic acid in source water by Fe3O4@SiO2@TiO2-AC[J]. Industrial Water Treatment, 2020, 40(8): 55-59, 74. | |
73 | AHMED S, RASUL M G, BROWN R, et al. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review[J]. Journal of Environmental Management, 2011, 92(3): 311-330. |
74 | AKPAN U G, HAMEED B H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review[J]. Journal of Hazardous Materials, 2009, 170(2/3): 520-529. |
75 | CHAI B, PENG T Y, ZENG P, et al. Preparation of a MWCNTs/ZnIn2S4 composite and its enhanced photocatalytic hydrogen production under visible-light irradiation[J]. Dalton Transactions, 2012, 41(4): 1179-1186. |
76 | KIM J, CHOI W. TiO2 modified with both phosphate and platinum and its photocatalytic activities[J]. Applied Catalysis B: Environmental, 2011, 106(1/2): 39-45. |
77 | 高丹, 李志龙, 彭绍琴, 等. 乙二醇作电子给体的Pt/TiO2光催化海水制氢反应[J]. 南昌大学学报(理科版), 2010, 34(1): 82-84, 93. |
GAO Dan, LI Zhilong, PENG Shaoqin, et al. Photocatalytic hydrogen evolution using glycol as electron donors over Pt/TiO2[J]. Journal of Nanchang University (Natural Science), 2010, 34(1): 82-84, 93. | |
78 | KAMPOURI S, NGUYEN T N, SPODARYK M, et al. Concurrent photocatalytic hydrogen generation and dye degradation using MIL-125-NH2 under visible light irradiation[J]. Advanced Functional Materials, 2018, 28(52): 1806368. |
79 | SÖRENSEN M, FRIMMEL F H. Photochemical degradation of hydrophilic xenobiotics in the UVH2O2 process: influence of nitrate on the degradation rate of EDTA, 2-amino-1-naphthalenesulfonate, diphenyl-4-sulfonate and 4,4'-diaminostilbene-2,2'-disulfonate[J]. Water Research, 1997, 31(11): 2885-2891. |
80 | SÖRENSEN M, FRIMMEL F H. Photochemical degradation of hydrophilic xenobiotics in the UV/H2O2-process. Influence of bicarbonate on the degradation rate of EDTA, 2-amino-1-naphthalenesulfonate, diphenyl-4-sulfonate, and 4,4'-diaminostilbene-2,2'-disulfonate[J]. Acta Hydrochimica et Hydrobiologica, 1996, 24(4): 185-188. |
81 | WANG C Y, ZHU L Y, WEI M C, et al. Photolytic reaction mechanism and impacts of coexisting substances on photodegradation of bisphenol A by Bi2WO6 in water[J]. Water Research, 2012, 46(3): 845-853. |
82 | LUO X, CHEN C, YANG J, et al. Characterization of La/Fe/TiO₂ and its photocatalytic performance in ammonia nitrogen wastewater[J]. International Journal of Environmental Research and Public Health, 2015, 12(11): 14626-14639. |
83 | 任学昌, 刘宏飞, 张翠玲, 等. 水体中常见无机阳离子对TiO2薄膜光催化还原Cr(Ⅵ)的影响[J]. 环境工程学报, 2010, 4(2): 288-292. |
REN Xuechang, LIU Hongfei, ZHANG Cuiling, et al. Effects of inorganic cations on photocatalytic reduction of chromium(Ⅵ) over TiO2 thin films[J]. Chinese Journal of Environmental Engineering, 2010, 4(2): 288-292. | |
84 | KRAEUTLER B, BARD A J. Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates[J]. Journal of the American Chemical Society, 1978, 100(13): 4317-4318. |
85 | 姜安玺, 高洁, 王化云, 等. 水中腐殖酸的光催化氧化研究[J]. 哈尔滨建筑大学学报, 2001(2): 44-47. |
JIANG Anxi, GAO Jie, WANG Huayun, et al. Photocatalytic oxidation of humic acid in water[J]. Journal of Harbin University of Civil Engineering and Architecture, 2001(2): 44-47. | |
86 | CASSANO A E, ALFANO O M. Reaction engineering of suspended solid heterogeneous photocatalytic reactors[J]. Catalysis Today, 2000, 58(2/3): 167-197. |
87 | SAKTHIVEL S, NEPPOLIAN B, SHANKAR M V, et al. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2[J]. Solar Energy Materials and Solar Cells, 2003, 77(1): 65-82. |
88 | SAUER T, CESCONETO NETO G, JOSÉ H J, et al. Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 149(1/2/3): 147-154. |
89 | SUN D C, SUN W Z, YANG W Y, et al. Efficient photocatalytic removal of aqueous NH4+-NH3 by palladium-modified nitrogen-doped titanium oxide nanoparticles under visible light illumination, even in weak alkaline solutions[J]. Chemical Engineering Journal, 2015, 264: 728-734. |
90 | 张向华, 刘鸿, 李文钊, 等. 弱紫外光光催化降解2,4-二氯苯氧基乙酸、对氯酚和草酸同时产氢[J]. 催化学报, 2008, 29(3): 281-286. |
ZHANG Xianghua, LIU Hong, LI Wenzhao, et al. Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid, 4-chlorophenol, and oxalic acid with simultaneous hydrogen production under weak UV light illumination[J]. Chinese Journal of Catalysis, 2008, 29(3): 281-286. |
[1] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[2] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[3] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[4] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[5] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[6] | 王琦, 寇丽红, 王冠宇, 王吉坤, 刘敏, 李兰廷, 王昊. 焦化废水生物出水中可溶解性有机物的分子识别[J]. 化工进展, 2023, 42(9): 4984-4993. |
[7] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[8] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[9] | 吕程远, 张函, 杨明旺, 杜健军, 樊江莉. 生物成像用二氧杂环丁烷余辉发光体系的研究进展[J]. 化工进展, 2023, 42(8): 4108-4122. |
[10] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[11] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[12] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[13] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[14] | 陈娜, 张肖静, 张楠, 马冰冰, 张涵, 杨浩洁, 张宏忠. 淬灭酶对亚硝化-混合自养脱氮系统的影响[J]. 化工进展, 2023, 42(7): 3816-3823. |
[15] | 王俊杰, 潘艳秋, 牛亚宾, 俞路. 分子水平催化重整装置模型构建及应用[J]. 化工进展, 2023, 42(7): 3404-3412. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |