1 | SUN G Y, SIMONYI A, FRITSCHE K L, et al. Docosahexaenoic acid (DHA): an essential nutrient and a nutraceutical for brain health and diseases[J]. Prostaglandins Leukotrienes & Essential Fatty Acids, 2018,136(9):3-13. | 2 | HORROCKS L A, YEO Y K. Health benefits of docosahexaenoic acid (DHA)[J]. Pharmacological Research, 1999, 40(3): 205-206. | 3 | 杜冰, 姚汝华, 潘力, 等. 发酵法生产DHA的研究[J]. 天津轻工业学院学报, 2000(4): 28-30. | 3 | DU B, YAO R H, PAN L, et al. Study of DHA production by microorganism fermentation[J]. Journal of Tianjin University of Light Industry, 2000 (4): 28-30. | 4 | ACKMAN R G, JANGAARD P M, HOYLE R J, et al. Origin of marine fatty acids. I. Analyses of the fatty acids produced[J]. Journal De L’Office Des Recherches Sur Les Pêcheries Du Canada, 2011, 21(4): 747-756. | 5 | ARMENTA R E, VALENTINE M C. Single-cell oils as a source of omega-3 fatty acids: an overview of recent advances[J]. Jaocs Journal of the American Oil Chemists Society, 2013, 90(2): 167-182. | 6 | GUPTA A, BARROW C J, PURI M. Omega-3 biotechnology: thraustochytridsas a novel source of omega-3 oils[J]. Biotechnology Advances, 2012, 30(6): 1733-1745. | 7 | SINGH P, LIU Y, LI L, et al. Ecological dynamics and biotechnological implications of thraustochytrids from marine habitats[J]. Applied Microbiology & Biotechnology, 2014, 98(13): 5789-805. | 8 | 李晶晶, 刘瑛, 成家杨, 等. 深圳海域6株破囊壶菌的生长特性及油脂成分分析[J]. 微生物学通报, 2015, 42(1): 17-23. | 8 | LI J J, LIU Y, CHENG J Y, et al. Growth features and fatty acid analysis of six thraustochytrid strains from Shenzhen coastal seawater[J]. Microbiology China, 2015, 42(1): 17-23. | 9 | SPARROW F K. Biological observations on the Marine Fungi of woods hole waters[J]. Biological Bulletin, 1936, 70(2): 236-263. | 10 | SPARROW F K. Zoosporic marine fungi from the Pacific Northwest (U.S.A.)[J]. Archiv Für Mikrobiologie, 1969, 66(2): 129-146. | 11 | RAGHUKUMAR S. Ecology of the marine protists, the Labyrinthulomycetes (thraustochytridsand labyrinthulids)[J]. European Journal of Protistology, 2002, 38(2): 127-145. | 12 | YOKOYAMA R, SALLEH B, HONDA D. Taxonomic rearrangement of the genus Ulkenia sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for ulkenia and erection of botryochytrium, parietichytrium[J]. Mycoscience, 2007, 48(6): 329. | 13 | FOSSIER L M, LEE K C, NICHOLS P D, et al. Taxonomy, ecology and biotechnological applications of thraustochytrids: a review[J]. Biotechnology Advances, 2018, 36(1): 26-46. | 14 | WANG Q, YE H, XIE Y, et al. Culturable diversity and lipid production profile of labyrinthulomycete protists isolated from Coastal Mangrove Habitats of China[J]. Marine Drugs, 2019, 17(5): 268. | 15 | GUO D S, JI X J, REN L J, et al. Development of a scale-up strategy for fermentative production of docosahexaenoic acid by Schizochytrium sp.[J]. Chemical Engineering Science, 2018, 176: 600-608. | 16 | BAILEY R B, DIMASI D, HANSEN J M, et al. Enhanced production of lipids containing polyenoic fatty acid by very high density cultures of eukaryotic microbes in fermentors: US 6607900[P]. 2003-08-19. | 17 | LING X, GUO J, LIU X, et al. Impact of carbon and nitrogen feeding strategy on high production of biomass and docosahexaenoic acid (DHA) by Schizochytrium sp. LU310[J]. Bioresource Technology, 2015, 184: 139-147. | 18 | HUANG T Y, LU W C, CHU I M. A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid[J]. Bioresource Technology, 2012, 123(4): 8-14. | 19 | ZHANG M, WU W, GUO X, et al. Mathematical modeling of fed-batch fermentation of Schizochytrium sp. FJU-512 growth and DHA production using a shift control strategy[J]. Biotech., 2018, 8(3): 162. | 20 | YE H, HE Y, XIE Y, et al. Fed-batch fermentation of mixed carbon source significantly enhances the production of docosahexaenoic acid in Thraustochytriidae sp. PKU# Mn16 by differentially regulating fatty acids biosynthetic pathways[J]. Bioresource Technology, 2020, 297: 122402. | 21 | WANG Q Z, YE H K, SEN B, et al. Improved production of docosahexaenoic acid in batch fermentation by newly-isolated strains of Schizochytrium sp. and Thraustochytriidae sp. through bioprocess optimization[J]. Synthetic & Systems Biotechnology, 2018, 3(2): 121-129. | 22 | BAJPAI P, BAJPAI P K, WARD O P. Production of docosahexaenoic acid by Thraustochytrium aureum[J]. Applied Microbiology and Biotechnology, 1991, 35(6): 706-710. | 23 | RATLEDGE C. Fatty acid biosynthesis in microorganisms being used for single cell oil production[J]. Biochimie, 2004, 86(11): 807-815. | 24 | WANG Q, SEN B, LIU X, et al. Enhanced saturated fatty acids accumulation in cultures of newly-isolated strains of Schizochytrium sp. and Thraustochytriidae sp. for large-scale biodiesel production[J]. Science of the Total Environment, 2018, 631/632: 994-1004. | 25 | GUPTA A, SINGH D, BARROW C J, et al. Exploring potential use of Australian thraustochytrids for the bioconversion of glycerol to omega-3 and carotenoids production[J]. Biochemical Engineering Journal, 2013, 78(6): 11-17. | 26 | BARCLAY W, ZELLER S. Nutritional enhancement of n-3 and n-6 fatty acids in Rotifers and Artemia Nauplii by feeding spray-dried Schizochytrium sp.[J]. Journal of the World Aquaculture Society, 1996, 27(3): 314-322. | 27 | GANUZA E, TEZ-SANTANA T BEN, ATALAH E, et al. Crypthecodinium cohnii and Schizochytrium sp. as potential substitutes to fisheries-derived oils from seabream (Sparus aurata) microdiets[J]. Aquaculture, 2008, 277(1/2): 109-116. | 28 | XIE Y, WANG G. Mechanisms of fatty acid synthesis in marine fungus-like protists[J]. Applied Microbiology & Biotechnology, 2015, 99(20): 8363-8375. | 29 | SONG Z, STAJICH J E, XIE Y, et al. Comparative analysis reveals unexpected genome features of newly isolated thraustochytridsstrains: on ecological function and PUFAs biosynthesis[J]. BMC Genomics, 2018, 19(1): 541. | 30 | HAYASHI S, NAKA M, IKEUCHI K, et al. Control mechanism for carbon-chain length in polyunsaturated fatty-acid synthases[J]. Angewandte Chemie: International Edition, 2019, 58(20): 6605-6610. | 31 | CHANG G, LUO Z, GU S, et al. Fatty acid shifts and metabolic activity changes of Schizochytrium sp. S31 cultured on glycerol[J]. Bioresource Technology, 2013, 142(8): 255-260. | 32 | 王镜岩, 朱圣庚, 徐长法. 生物化学教程[M]. 北京: 高等教育出版社, 2008. | 32 | WANG J Y, ZHU S G, XU C F. Biochemistry[M]. Beijing: Higher Education Press, 2008. | 33 | JUNICHIRO O, KEISHI S, YUJI O, et al. Two fatty acid elongases possessing C18-Δ6/C18-Δ9/C20-Δ5 or C16-Δ9 elongase activity in Thraustochytrium sp. ATCC 26185[J]. Marine Biotechnology, 2013, 15(4): 476-486. | 34 | QIU X. Biosynthesis of docosahexaenoic acid (DHA, 22:6-4,7,10,13,16,19): two distinct pathways[J]. Prostaglandins Leukotrienes & Essential Fatty Acids, 2003, 68(2): 181-186. | 35 | KANG D H, ANBU P, KIM W H, et al. Coexpression of Elo-like enzyme and Δ5, Δ4-desaturases derived from Thraustochytrium aureum ATCC 34304 and the production of DHA and DPA in Pichia pastoris[J]. Biotechnology & Bioprocess Engineering, 2008, 13(4): 483-490. | 36 | NAGANO N, SAKAGUCHI K, TAOKA Y, et al. Detection of genes involved in fatty acid elongation and desaturation in thraustochytrid marine eukaryotes[J]. Journal of Oleo Science, 2011, 60(9): 475-481. | 37 | MATSUDA T, SAKAGUCHI K, HAMAGUCHI R, et al. Analysis of Δ12-fatty acid desaturase function revealed that two distinct pathways are active for the synthesis of PUFAs inT. aureum ATCC 34304[J]. Journal of Lipid Research, 2012, 53(6): 1210-22. | 38 | POLLAK D W, BOSTICK M W, YOON H, et al. Isolation of a Δ5 desaturase gene from euglena gracilis and functional dissection of its HPGG and HDASH motifs[J]. Lipids, 2012, 47(9): 913-926. | 39 | HAUVERMALE A, KUNER J, ROSENZWEIG B, et al. Fatty acid production in Schizochytrium sp.: involvement of a polyunsaturated fatty acid synthase and a type Ⅰ fatty acid synthase[J]. Lipids, 2006, 41(8): 739. | 40 | METZ J G, KUNER J, ROSENZWEIG B, et al. Biochemical characterization of polyunsaturated fatty acid synthesis in Schizochytrium: release of the products as free fatty acids[J]. Plant Physiology and Biochemistry, 2009, 47(6): 472-478. | 41 | QIU X, HONG H, MACKENZIE S L. Identification of a Δ4 fatty acid desaturase from Thraustochytrium sp. involved in the biosynthesis of docosahexanoic acid by heterologous expression in saccharomyces cerevisiae and brassica juncea[J]. Journal of Biological Chemistry, 2001, 276(34): 31561-31566. | 42 | METZ J G, ROESSLER P, FACCIOTTI D, et al. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes[J]. Science, 2001, 293(5528): 290-293. | 43 | LI Z, CHEN X, LI J, et al. Functions of PKS genes in lipid synthesis of Schizochytrium sp. by gene disruption and metabolomics analysis[J]. Marine Biotechnology, 2018, 20(6): 792-802. | 44 | 李清. 裂殖壶菌遗传转化体系的研究及其在DHA合成途径研究中的应用[D]. 青岛: 中国海洋大学, 2012. | 44 | LI Q. Study on the gene transformation system of Schizochytrium and application in the pathway of DHA synthesizing[D]. Qingdao: Ocean University of China, 2012. | 45 | 周兵兵. 裂殖壶菌培养基氮源的优化及PKS酶域过表达菌株的构建[D]. 青岛: 中国海洋大学, 2015. | 45 | ZHOU B B. Study on nitrogen optimization of medium and overexpression of the enzyme domain of PKS in Aurantiochytrium limacinum[D]. Qingdao: Ocean University of China, 2015. | 46 | 娄菲, 张涛, 刘睿杰, 等. 温度对裂殖壶菌S31中FAS及PKS基因转录水平的影响[J]. 中国油脂, 2017, 42(8): 89-92. | 46 | LOU F, ZHANG T, LIU R J, et al. Influence of temperature on FAS and PKS genes transcription levels of Schizochytrium sp. S31 [J]. China Oils and Fats, 2017, 42(8): 89-92. | 47 | REN L J, CHEN S L, GENG L J, et al. Exploring the function of acyltransferase and domain replacement in order to change the polyunsaturated fatty acid profile of Schizochytrium sp.[J]. Algal Research, 2018, 29: 193-201. | 48 | REN L, HU X, ZHAO X, et al. Transcriptomic analysis of the regulation of lipid fraction migration and fatty acid biosynthesis in Schizochytrium sp[J]. Scientific Reports, 2017, 7(1): 1-10. | 49 | AASEN I M, ERTESV G H, HEGGESET T M, et al. Thraustochytridsas production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids[J]. Applied Microbiology & Biotechnology, 2016, 100(10): 4309-4321. | 50 | FAN K W, CHEN F. Production of high-value products by marine microalgae thraustochytrids[J]. Bioprocessing for Value-Added Products from Renewable Resources, 2007: 293-323. | 51 | PATIL K P, GOGATE P R. Improved synthesis of docosahexaenoic acid (DHA) using Schizochytrium limacinum SR21 and sustainable media[J]. Chemical Engineering Journal, 2015, 268: 187-196. | 52 | NAZIR Y, SHUIB S, KALIL M S, et al. Optimization of culture conditions for enhanced growth, lipid and docosahexaenoic acid (DHA) production of Aurantiochytrium SW1 by response surface methodology[J]. Scientific Reports, 2018, 8(1): 8909. | 53 | 吴克刚, 柴向华. 破囊壶菌Thraustochytrium roseum产DHA的营养条件研究[J]. 食品与发酵工业, 2003, 29(2): 42-48. | 53 | WU K G, CHAI X H. Nutrition requirement for DHA production by Thraustochytrium roseum[J]. Food and Fermentation Industries, 2003, 29(2): 42-48. | 54 | WU S T, YU S T, LIN L P. Effect of culture conditions on docosahexaenoic acid production by Schizochytrium sp. S31[J]. Process Biochemistry, 2005, 40(9): 3103-3108. | 55 | WU K, DING L, ZHU P, et al. Application of the response surface methodology to optimize the fermentation parameters for enhanced docosahexaenoic acid (DHA) production by Thraustochytrium sp. ATCC 26185[J]. Molecules, 2018, 23(4): 974. | 56 | MANIKAN V, KALIL M S, HAMID A A. Response surface optimization of culture medium for enhanced docosahexaenoic acid production by a Malaysian thraustochytrid[J]. Scientific Reports, 2015, 5: 8611. | 57 | CHANDRASEKARAN K, ROY R K, CHADHA A. Docosahexaenoic acid production by a novel high yielding strain of Thraustochytrium sp. of Indian origin: isolation and bioprocess optimization studies[J]. Algal Research, 2018, 32: 93-100. | 58 | LI W, WANG J, WANG Y. Optimization of fermentation medium for Schizochytrium sp. ATCC 2088 by response surface methodology[J]. China Feed, 2014, 23: 22-25. | 59 | RATLEDGE C. Omega-3 biotechnology: errors and omissions[J]. Biotechnology Advances, 2012, 30(6): 1746-1747. | 60 | BOWLES R D, HUNT A E, BREMER G B, et al. Long-chain n—3 polyunsaturated fatty acid production by members of the marine protistan group the thraustochytrids: screening of isolates and optimisation of docosahexaenoic acid production[J]. Progress in Industrial Microbiology, 1999, 35(3): 193-202. | 61 | 张静. 高山被孢霉发酵生产多不饱和脂肪酸的初步研究[D]. 无锡: 江南大学, 2011. | 61 | ZHANG J. The preliminary study of fermentation conditions for polyunsaturated fatty acids production by Mortierella aplina[D]. Wuxi: Jiangnan University, 2011. | 62 | JAKOBSEN A N, AASEN I M, JOSEFSEN K D, et al. Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation[J]. Appl. Microbiol. Biotechnol., 2008, 80(2): 297-306. | 63 | CHANG G, WU J, JIANG C, et al. The relationship of oxygen uptake rate and kLa with rheological properties in high cell density cultivation of docosahexaenoic acid by Schizochytrium sp. S31[J]. Bioresource Technology, 2014, 152(1): 234-240. | 64 | QU L, JI X J, REN L J, et al. Enhancement of docosahexaenoic acid production by Schizochytrium sp. using a two-stage oxygen supply control strategy based on oxygen transfer coefficient[J]. Letters in Applied Microbiology, 2011, 52(1): 22-27. | 65 | CHI Z, LIU Y, FREAR C, et al. Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level[J]. Applied Microbiology and Biotechnology, 2009, 81(6): 1141-1148. | 66 | 蒋加拉. 微生物油脂菌株筛选及发酵条件优化[D]. 长沙: 湖南农业大学, 2010. | 66 | JIANG J L. Studies on breeding high-yield lipid strain and optimizing its fermented conditions[D]. Changsha: Hunan Agricultural University, 2010. | 67 | LEMAN J, BRAKONIECKA-SIKORSKA A. Effect of growth conditions on biosynthesis of oil by Mortierella ramanniana[J]. Polish Journal of Food & Nutrition Sciences, 1996, 46(3): 111-120. | 68 | BARCLAY W, WEAVER C, METZ J, et al. Development of a docosahexaenoic acid production technology using Schizochytrium: historical perspective and update[M]. Single Cell Oils, 2010: 75-96. | 69 | CHAISUTYAKORN P, PRAIBOON J, KAEWSURALIKHIT C. The effect of temperature on growth and lipid and fatty acid composition on marine microalgae used for biodiesel production[J]. Journal of Applied Phycology, 2018, 30: 37-45. | 70 | 陈诚. 裂殖壶菌(Schizochytrium limacinum SR21)发酵制备二十二碳六烯酸(DHA)过程的初步研究[D]. 杭州: 浙江大学, 2007. | 70 | CHEN C. Study on producing DHA by fermentation with Schizochytrium limacinum SR21[D]. Hangzhou: Zhejiang University, 2007. | 71 | ZENG Y, JI X J, LIAN M, et al. Development of a temperature shift strategy for efficient docosahexaenoic acid production by a marine fungoid protist, Schizochytrium sp. HX-308[J]. Applied Biochemistry & Biotechnology, 2011, 164(3): 249-255. | 72 | CHEN C Y, YANG Y T. Combining engineering strategies and fermentation technology to enhance docosahexaenoic acid (DHA) production from an indigenous Thraustochytrium sp. BM2 strain[J]. Biochemical Engineering Journal, 2018, 133: 179-185. | 73 | ZHANG Y, MIN Q, XU J, et al. Effect of malate on docosahexaenoic acid production from Schizochytrium sp. B4D1[J]. Electronic Journal of Biotechnology, 2016, 19(1): 56-60. | 74 | ZHAO B, LI Y, MBIFILE M D, et al. Improvement of docosahexaenoic acid fermentation from Schizochytrium sp. AB-610 by staged pH control based on cell morphological changes[J]. Engineering in Life Sciences, 2017, 17(9): 981-988. | 75 | QU L, JI X J, REN L J, et al. Enhancement of docosahexaenoic acid production by Schizochytrium sp. using a two-stage oxygen supply control strategy based on oxygen transfer coefficient[J]. Letters in Applied Microbiology, 2015, 52(1): 22-27. | 76 | YIN F W, ZHU S Y, GUO D S, et al. Development of a strategy for the production of docosahexaenoic acid by Schizochytrium sp. from cane molasses and algae-residue[J]. Bioresource Technology, 2019, 271: 118-124. | 77 | HEATH C, KISS R. Cell culture process development: advances in process engineering[J]. Biotechnology Progress, 2007, 23(1): 46-51. | 78 | GARCIA-OCHOA F, GOMEZ E. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview[J]. Biotechnology Advances, 2009, 27(2): 153-176. | 79 | QU L, REN L J, HUANG H. Scale-up of docosahexaenoic acid production in fed-batch fermentation by Schizochytrium sp. based on volumetric oxygen-transfer coefficient[J]. Biochemical Engineering Journal, 2013, 77: 82-87. | 80 | ZHAO X, REN L, GUO D, et al. CFD investigation of Schizochytrium sp. impeller configurations on cell growth and docosahexaenoic acid synthesis[J]. Bioprocess and Biosystems Engineering, 2016, 39(8): 1297-1304. | 81 | GUPTA K, MISHRA P, SRIVASTAVA P. A correlative evaluation of morphology and rheology of Aspergillus terreus during lovastatin fermentation[J]. Biotechnology and Bioprocess Engineering, 2007, 12(2): 140-146. | 82 | WANG G, TANG W, XIA J, et al. Integration of microbial kinetics and fluid dynamics toward model-driven scale-up of industrial bioprocesses[J]. Engineering in Life Sciences, 2015, 15(1): 20-29. | 83 | ZOU X, XIA J Y, CHU J, et al. Real-time fluid dynamics investigation and physiological response for erythromycin fermentation scale-up from 50L to 132m3 fermenter[J]. Bioprocess and Biosystems Engineering, 2012, 35(5): 789-800. | 84 | DUAN S, YUAN G, ZHAO Y, et al. Simulation of computational fluid dynamics and comparison of cephalosporin C fermentation performance with different impeller combinations[J]. Korean Journal of Chemical Engineering, 2013, 30(5): 1097-1104. | 85 | RAGHUKUMAR S. Fungi in coastal and oceanic marine ecosystems[M]. Berlin: Springer, 2017. |
|