化工进展 ›› 2023, Vol. 42 ›› Issue (1): 354-372.DOI: 10.16085/j.issn.1000-6613.2022-0573
王川东1,2,3(), 张君奇1,2(), 刘丁源1,2, 马媛媛4, 李锋1,2(), 宋浩1,2()
收稿日期:
2022-04-06
修回日期:
2022-06-11
出版日期:
2023-01-25
发布日期:
2023-02-20
通讯作者:
李锋,宋浩
作者简介:
王川东(1990—),男,硕士研究生,研究方向为合成生物学。E-mail:1137866329@qq.com基金资助:
WANG Chuandong1,2,3(), ZHANG Junqi1,2(), LIU Dingyuan1,2, MA Yuanyuan4, LI Feng1,2(), SONG Hao1,2()
Received:
2022-04-06
Revised:
2022-06-11
Online:
2023-01-25
Published:
2023-02-20
Contact:
LI Feng, SONG Hao
摘要:
木质纤维素生物质是储量丰富的可再生资源,在能源、化工及医药领域具有广阔的应用前景。木质纤维素各组分因氢键和共价键的存在而结合紧密,需经酸、碱、高温、有机溶剂等预处理后才能高效酶解利用,其水解产物的主要成分为己糖(60%~70%,葡萄糖为主)和戊糖(30%~40%,木糖为主)的混合物。本文主要针对水解液中木糖和葡萄糖的共利用效率相关问题,以基因工程改造微生物利用木糖和葡萄糖共发酵生产醇类、生物油脂、γ-聚谷氨酸及有机酸等生物基化学品为主线,从代谢途径重构、基因水平调控及发酵技术优化等方面综述了近年来的研究进展。最后,从菌株筛选、基因与代谢工程调控、细胞固定化、产物处理及发酵工艺等层面总结了该领域目前的研究特点、技术瓶颈和未来的研究方向与思路。
中图分类号:
王川东, 张君奇, 刘丁源, 马媛媛, 李锋, 宋浩. 微生物共利用木糖和葡萄糖生产化学品研究进展[J]. 化工进展, 2023, 42(1): 354-372.
WANG Chuandong, ZHANG Junqi, LIU Dingyuan, MA Yuanyuan, LI Feng, SONG Hao. Co-utilization of xylose and glucose to produce chemicals by microorganisms[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 354-372.
图1 木糖及葡萄糖共利用代谢途径与发酵产品黑色实线箭头由左到右,编号①~⑤依次为:葡萄糖ED途径、葡萄糖EMP途径、木糖氧化还原途径、木糖异构酶途径、木糖Weimberg途径。黑色虚线为间接或多步反应过程。红色实心箭头为磷酸己糖解酮酶途径。红色虚线箭头为乳酸发酵。紫色实线箭头为丁酸合成途径。紫色虚线箭头为乙醇发酵。蓝色实线为BT合成途径。蓝色虚线为丁醇合成途径。酒红色虚线箭头为γ-PGA合成途径。绿色实线箭头为磷酸戊糖解酮酶途径。绿色虚线为木糖Dahms途径TCA—三羧酸循环;PPP—磷酸戊糖途径;GluT—葡萄糖转运蛋白基因;glk—葡萄糖激酶基因;Zwf—葡萄糖-6-磷酸脱氢酶基因;edd—磷酸葡萄糖酸脱水酶基因;KDPG—2-酮-3-脱氧-6-磷酸葡萄糖酸;eda—KDPG醛缩酶基因;HK—己糖激酶;PHI—磷酸己糖异构酶;PFK—磷酸果糖激酶;ALD—醛缩酶;DHAP—二羟丙酮磷酸;TPI—磷酸甘油异构酶;GAPDH—甘油醛三磷酸脱氢酶;PGK—磷酸甘油酸激酶;PGAM—磷酸甘油酸变位酶;NSE—烯醇化酶;PEP—磷酸烯醇式丙酮酸;PK—丙酮酸激酶;PTA—磷酸转酰酶;ACK—乙酸激酶;TK—转酮醇酶;Xyl1—木糖还原酶基因;Xyl2—木糖醇脱氢酶基因;Xks1—来自S. stipites的木酮糖激酶基因;XylA—木糖异构酶基因;XylB—来自E. coli的木酮糖激酶基因;3-HP—3-羟基丙酸;AKG—α-酮戊二酸;LDH—乳酸脱氢酶;THL—硫解酶;BHBD—β-羟丁酰基辅酶A脱氢酶;CRO—巴豆酰酶;BAD—丁酰辅酶A脱氢酶;PTB—磷酸丁酰转移酶;BUK—丁酰激酶;ADD—醇/醛脱氢酶;BDHB/BDHA—丁醇脱氢酶;XylT—木糖转运蛋白基因;CcXylB—来自C. crescentus的木糖脱氢酶基因;XylC—木糖-γ-内酯酶基因;XylD—D-木糖酸脱水酶;XylX—2-酮-3-脱氧-D-木糖酸脱水酶基因;CcXylA—来自C. crescentus的α-酮戊二酸半醛脱氢酶基因;XLAC—D-木糖-γ-内酯;XA—D-木糖酸盐;KDX—2-酮-3-脱氧-D-木糖酸;KGSA—α-酮戊二酸半醛;KdcA—2-酮酸脱羧酶基因;DHB—3,4-二羟基丁醛;BT—D-1,2,4-丁三醇;γ-PGA—γ-聚谷氨酸;NAD+—氧化型辅酶Ⅰ;NADH—还原性辅酶Ⅰ;ATP—三磷酸腺苷;ADP—二磷酸腺苷;Pi—磷酸基团;FADH2—还原型黄素腺嘌呤二核苷酸;GTP—三磷酸鸟苷;NADP+—氧化型辅酶Ⅱ;NADPH—还原型辅酶Ⅱ
酶催化步骤 | Gθ/kJ·mol-1 | ∆Gθ/kJ·mol-1 |
---|---|---|
Step0:初始态 | 0 | — |
Step1:XDH | -19.20 | -19.20 |
Step2:XLA | -40.40 | -21.20 |
Step3:XAD | -82.30 | -41.90 |
Step4:KDXD | -121.50 | -39.20 |
Step5:KGSADH | -156.80 | -35.30 |
表1 Weimberg途径标准吉布斯自由能变化[30]
酶催化步骤 | Gθ/kJ·mol-1 | ∆Gθ/kJ·mol-1 |
---|---|---|
Step0:初始态 | 0 | — |
Step1:XDH | -19.20 | -19.20 |
Step2:XLA | -40.40 | -21.20 |
Step3:XAD | -82.30 | -41.90 |
Step4:KDXD | -121.50 | -39.20 |
Step5:KGSADH | -156.80 | -35.30 |
菌株 | 代谢途径 | 原料 | 技术方法 | 产物产量/g·L-1 | 收率/g·g-1 | 参考文献 |
---|---|---|---|---|---|---|
T. cutaneum | EMP-TCA途径 | 玉米秸秆 | 选择培养基筛选,3L发酵罐BF | 油脂 | 0.39 | [ |
R. arrhizus | 磷酸酮酶途径 | 木糖、葡萄糖 | 选择培养基筛选,SF | FA 46.78 | 0.47 | [ |
C. tyrobutyricum | ED-XR途径 | 大豆壳、玉米纤维、小麦秸秆、水稻秸秆、甘蔗渣 | 表达异源XylT、XylA、XylB基因,1L搅拌槽生物反应器 | 丁酸42.60 | 0.36 | [ |
E. coli | XR-XI途径 | 空棕榈果束纤维 | 适应性进化,基因突变筛选,表达戊糖代谢基因,混糖,微型发酵罐FBF | 木糖醇4.80 | 0.99 | [ |
K. marxianus | EMP途径 | 满江红 | 热酸水解、酶法糖化,半厌氧SF | 乙醇26.80 | 0.43 | [ |
C. lusitaniae | EMP途径 | 满江红 | 热酸水解、酶法糖化,半厌氧SF | 乙醇23.20 | 0.37 | [ |
S. stipitis | EMP途径 | 满江红 | 热酸水解、酶法糖化,半厌氧SF | 乙醇18.20 | 0.29 | [ |
P. tannophilus | XR途径 | 玉米芯 | 稀酸热水解、木碳粉解毒处理、滤纸过滤,Luedeking-Piret模型分析,深层发酵 | 木糖醇0.81 | 0.81 | [ |
D. hansenii varhanseni | XR途径 | 玉米芯 | 稀酸热水解、木碳粉解毒处理、滤纸过滤,Luedeking-Piret模型分析,深层发酵 | 木糖醇0.79 | 0.79 | [ |
C. guillermondii | XR途径 | 稻草 | 稀酸热水解、木碳粉解毒处理、滤纸过滤,Luedeking-Piret模型分析,深层发酵 | 木糖醇0.76 | 0.76 | [ |
S. cerevisiaea C. utilis | EMP途径 | 芦苇秸秆 | 60目筛、热碱液处理,加纤维素酶,混菌有氧SF | 乙醇9.81 | 0.10 | [ |
B. subtilis | 谷氨酸合成-WBG途径 | 木糖、葡萄糖 | 表达异源WBG途径基因,0.50L搅拌槽发酵罐BF | γ-PGA 5 | 0.26 | [ |
CyanobacteriumSynechocystis | XI-EMP-TCA途径 | 木糖、葡萄糖、CO2 | 糖原合成突变体∆glgC中表达木糖分解代谢基因XylA、XylB,CO2固定,氮饥饿条件,SF | 丙酮0.61、 AKG 0.42 | 0.76、 0.32 | [ |
C. glutamicum | EMP-XI途径 | 木糖、葡萄糖 | 结合甘油和3-HP合成基因,筛选活性醛脱氢酶,iolT1和glk取代PEP依赖的PTS,整合araE和XylA/B,5L发酵罐FBF | 3-HP 62.60 | 0.51 | [ |
E. coli | XR-WBG途径 | 木糖、葡萄糖 | 表达异源合成基因Xdh、MdlC,敲除旁路基因XylA、YjhH和YagE,过表达Zwf,敲除MtfA,失活PntAB基因,SF | BT 7.23 | 0.55 | [ |
K. pneumoniae | WBG途径 | 木糖、葡萄糖 | 表达Xdh、KivD及YjhG基因,敲除XylA基因,SF | BT 4.52 | 0.21 | [ |
S. cerevisiae | WBG途径 | 木糖、葡萄糖 | XylB、XylD、KdcA、Adh基因编码的异源四酶反应,整合KdcA基因至酵母基因组,发酵罐FBF | BT 6.60 | 0.57 | [ |
K. marxianus | XR-EMP | 木糖、葡萄糖 | 过表达异源XR、XD基因,敲除甘油、乙酸副产物基因,发酵罐FBF | 乙醇51.43 | 0.35 | [ |
K. marxianus | XR-WBG途径 | 木糖、葡萄糖 | 敲除Xyl1、Xyl2,过表达异源Xyl1基因,选择培养基筛选,无灭菌FBF | 木糖醇 312.05 | 0.99 | [ |
K. marxianus | XR途径 | 木糖、葡萄糖 | 过表达异源Xyl1基因,敲除木糖醇代谢基因,重构葡萄糖代谢,FBF | 木糖醇203.57 | 0.99 | [ |
Y. lipolytica | EMP-XR途径 | 木糖、葡萄糖 | 表达外源XDH、XR和内源XK、GPD1和DGA2,敲除POX1-6和TGL4基因,5L发酵罐FBF | 油脂22.50、 柠檬酸67.20 | 0.06、 0.18 | [ |
T. laichii | EMP-TCA | 木糖、葡萄糖 | 选择培养基筛选,FBF | 油脂 | 0.83 | [ |
R. toruloides | EMP-TCA | 木糖、葡萄糖 | 选择培养基筛选,FBF | 油脂 | 0.65 | [ |
L. starkeyi | 从头合成途径 | 玉米芯 | 稀酸处理,过碱化和活性炭吸附解毒,SF | 油脂 | 0.47 | [ |
C. humicola | 从头合成途径 | 玉米秸秆 | 高温、高压、碱水解预处理,SF | 油脂 | 0.44 | [ |
B. amyloliquefaciens | XI-不依赖谷氨酸的谷氨酸合成途径 | 玉米秸秆、豆粕 | 50L、150L曝气式连续搅拌固态生物反应器CF | γ-PGA 117、102* | — | [ |
R. arrhizus | 磷酸酮酶途径 | 木糖、葡萄糖 | 定向进化、SF | FA 28.48 | 0.46 | [ |
R. delemar | EMP-TCA途径 | 葡萄糖、玉米浆 | 粒径0.55mm球团固定、搅拌槽发酵罐BF | FA 39.56 | 0.40 | [ |
R. oryzae | LA发酵 | 木糖、葡萄糖 | 诱变筛选,SF | 乳酸119.22 | 0.80 | [ |
B. coagulans | LA发酵 | 玉米芯残渣 | SSF、FBF | 乳酸68 | 0.85 | [ |
B. coagulans | LA发酵 | 麦秸 | 稀硫酸预处理,7.50L发酵罐SSF | 乳酸52.20 | 0.87 | [ |
B. coagulans | LA发酵 | 木薯、高粱粉 | 补加α-淀粉酶、糖化酶10L发酵罐SSF | 乳酸68.72 | 0.99 | [ |
C. tyrobutyricum | ED-XR途径 | 木糖、葡萄糖 | 表达异源XylT、XylA、XylB基因,补加紫精,1L发酵罐BF | 丁酸46.40 | 0.43 | [ |
K. marxianus | XR-EMP途径 | 玉米芯 | 稀酸处理、微曝气两段式,5L发酵罐SSF、FBF | 乙醇24.20 | 0.82 | [ |
K. marxianus | XR-EMP途径 | 玉米芯 | 稀酸预处理,5L发酵罐微曝、两段式SSF、FBF | 木糖醇52 | 0.41 | [ |
表2 微生物木糖及葡萄糖共利用生产化学品
菌株 | 代谢途径 | 原料 | 技术方法 | 产物产量/g·L-1 | 收率/g·g-1 | 参考文献 |
---|---|---|---|---|---|---|
T. cutaneum | EMP-TCA途径 | 玉米秸秆 | 选择培养基筛选,3L发酵罐BF | 油脂 | 0.39 | [ |
R. arrhizus | 磷酸酮酶途径 | 木糖、葡萄糖 | 选择培养基筛选,SF | FA 46.78 | 0.47 | [ |
C. tyrobutyricum | ED-XR途径 | 大豆壳、玉米纤维、小麦秸秆、水稻秸秆、甘蔗渣 | 表达异源XylT、XylA、XylB基因,1L搅拌槽生物反应器 | 丁酸42.60 | 0.36 | [ |
E. coli | XR-XI途径 | 空棕榈果束纤维 | 适应性进化,基因突变筛选,表达戊糖代谢基因,混糖,微型发酵罐FBF | 木糖醇4.80 | 0.99 | [ |
K. marxianus | EMP途径 | 满江红 | 热酸水解、酶法糖化,半厌氧SF | 乙醇26.80 | 0.43 | [ |
C. lusitaniae | EMP途径 | 满江红 | 热酸水解、酶法糖化,半厌氧SF | 乙醇23.20 | 0.37 | [ |
S. stipitis | EMP途径 | 满江红 | 热酸水解、酶法糖化,半厌氧SF | 乙醇18.20 | 0.29 | [ |
P. tannophilus | XR途径 | 玉米芯 | 稀酸热水解、木碳粉解毒处理、滤纸过滤,Luedeking-Piret模型分析,深层发酵 | 木糖醇0.81 | 0.81 | [ |
D. hansenii varhanseni | XR途径 | 玉米芯 | 稀酸热水解、木碳粉解毒处理、滤纸过滤,Luedeking-Piret模型分析,深层发酵 | 木糖醇0.79 | 0.79 | [ |
C. guillermondii | XR途径 | 稻草 | 稀酸热水解、木碳粉解毒处理、滤纸过滤,Luedeking-Piret模型分析,深层发酵 | 木糖醇0.76 | 0.76 | [ |
S. cerevisiaea C. utilis | EMP途径 | 芦苇秸秆 | 60目筛、热碱液处理,加纤维素酶,混菌有氧SF | 乙醇9.81 | 0.10 | [ |
B. subtilis | 谷氨酸合成-WBG途径 | 木糖、葡萄糖 | 表达异源WBG途径基因,0.50L搅拌槽发酵罐BF | γ-PGA 5 | 0.26 | [ |
CyanobacteriumSynechocystis | XI-EMP-TCA途径 | 木糖、葡萄糖、CO2 | 糖原合成突变体∆glgC中表达木糖分解代谢基因XylA、XylB,CO2固定,氮饥饿条件,SF | 丙酮0.61、 AKG 0.42 | 0.76、 0.32 | [ |
C. glutamicum | EMP-XI途径 | 木糖、葡萄糖 | 结合甘油和3-HP合成基因,筛选活性醛脱氢酶,iolT1和glk取代PEP依赖的PTS,整合araE和XylA/B,5L发酵罐FBF | 3-HP 62.60 | 0.51 | [ |
E. coli | XR-WBG途径 | 木糖、葡萄糖 | 表达异源合成基因Xdh、MdlC,敲除旁路基因XylA、YjhH和YagE,过表达Zwf,敲除MtfA,失活PntAB基因,SF | BT 7.23 | 0.55 | [ |
K. pneumoniae | WBG途径 | 木糖、葡萄糖 | 表达Xdh、KivD及YjhG基因,敲除XylA基因,SF | BT 4.52 | 0.21 | [ |
S. cerevisiae | WBG途径 | 木糖、葡萄糖 | XylB、XylD、KdcA、Adh基因编码的异源四酶反应,整合KdcA基因至酵母基因组,发酵罐FBF | BT 6.60 | 0.57 | [ |
K. marxianus | XR-EMP | 木糖、葡萄糖 | 过表达异源XR、XD基因,敲除甘油、乙酸副产物基因,发酵罐FBF | 乙醇51.43 | 0.35 | [ |
K. marxianus | XR-WBG途径 | 木糖、葡萄糖 | 敲除Xyl1、Xyl2,过表达异源Xyl1基因,选择培养基筛选,无灭菌FBF | 木糖醇 312.05 | 0.99 | [ |
K. marxianus | XR途径 | 木糖、葡萄糖 | 过表达异源Xyl1基因,敲除木糖醇代谢基因,重构葡萄糖代谢,FBF | 木糖醇203.57 | 0.99 | [ |
Y. lipolytica | EMP-XR途径 | 木糖、葡萄糖 | 表达外源XDH、XR和内源XK、GPD1和DGA2,敲除POX1-6和TGL4基因,5L发酵罐FBF | 油脂22.50、 柠檬酸67.20 | 0.06、 0.18 | [ |
T. laichii | EMP-TCA | 木糖、葡萄糖 | 选择培养基筛选,FBF | 油脂 | 0.83 | [ |
R. toruloides | EMP-TCA | 木糖、葡萄糖 | 选择培养基筛选,FBF | 油脂 | 0.65 | [ |
L. starkeyi | 从头合成途径 | 玉米芯 | 稀酸处理,过碱化和活性炭吸附解毒,SF | 油脂 | 0.47 | [ |
C. humicola | 从头合成途径 | 玉米秸秆 | 高温、高压、碱水解预处理,SF | 油脂 | 0.44 | [ |
B. amyloliquefaciens | XI-不依赖谷氨酸的谷氨酸合成途径 | 玉米秸秆、豆粕 | 50L、150L曝气式连续搅拌固态生物反应器CF | γ-PGA 117、102* | — | [ |
R. arrhizus | 磷酸酮酶途径 | 木糖、葡萄糖 | 定向进化、SF | FA 28.48 | 0.46 | [ |
R. delemar | EMP-TCA途径 | 葡萄糖、玉米浆 | 粒径0.55mm球团固定、搅拌槽发酵罐BF | FA 39.56 | 0.40 | [ |
R. oryzae | LA发酵 | 木糖、葡萄糖 | 诱变筛选,SF | 乳酸119.22 | 0.80 | [ |
B. coagulans | LA发酵 | 玉米芯残渣 | SSF、FBF | 乳酸68 | 0.85 | [ |
B. coagulans | LA发酵 | 麦秸 | 稀硫酸预处理,7.50L发酵罐SSF | 乳酸52.20 | 0.87 | [ |
B. coagulans | LA发酵 | 木薯、高粱粉 | 补加α-淀粉酶、糖化酶10L发酵罐SSF | 乳酸68.72 | 0.99 | [ |
C. tyrobutyricum | ED-XR途径 | 木糖、葡萄糖 | 表达异源XylT、XylA、XylB基因,补加紫精,1L发酵罐BF | 丁酸46.40 | 0.43 | [ |
K. marxianus | XR-EMP途径 | 玉米芯 | 稀酸处理、微曝气两段式,5L发酵罐SSF、FBF | 乙醇24.20 | 0.82 | [ |
K. marxianus | XR-EMP途径 | 玉米芯 | 稀酸预处理,5L发酵罐微曝、两段式SSF、FBF | 木糖醇52 | 0.41 | [ |
图2 木糖及葡萄糖共利用合成D-1, 2, 4-丁三醇(BT)代谢途径及其代谢旁路[74-77]CcXylB,XylC,XylD,XylA,XylB—分别为木糖脱氢酶基因、木糖-γ-内酯酶基因、2-酮-3-脱氧-D-木糖酸脱水酶基因、木糖异构酶基因、木酮糖激酶基因;MdlC—P. putida的苯甲酰甲酸脱氢酶基因;YjhG/YagF,Adh—来自E.coli MG1655的木糖酸脱水酶基因,醇脱氢酶基因;YjhH/YagE—2-酮酸醛缩酶基因;KdcA—L. lactis的2-酮酸脱羧酶基因;YiaE—2-酮酸还原酶基因;YqhD—来自K. pneumoniae ZG25的醇脱氢酶基因;MgsA—甲基乙二醛合酶基因;AckA-pta—乙酸激酶-磷酸转乙酰酶基因;XylFGH/E—木糖转运蛋白基因;Zwf—葡萄糖-6-磷酸脱氢酶基因;HIccr/ptsG—磷酸转移酶系统基因;KDX—2-酮-3-脱氧-D-木糖酸;DHB—3, 4-二羟基丁醛;DHAP—二羟丙酮磷酸;PPP—磷酸戊糖途径;TCA—三羧酸循环;NAD+—氧化型辅酶Ⅰ;NADH—还原性辅酶Ⅰ;NADP+—氧化型辅酶Ⅱ;NADPH—还原型辅酶Ⅱ
图3 转运蛋白分类示意图ABC-transporter—三磷酸腺苷结合盒转运蛋白;ATP—三磷酸腺苷;ADP—二磷酸腺苷;Pi—磷酸基团;H+—质子;Symporter—不依赖糖浓度梯度但需偶联质子浓度消耗ATP能量的质子同向协同型转运体;Uniporter—借助糖浓度梯度的单向异化扩散型转运体;PTS—磷酸烯醇式丙酮酸-糖磷酸转移酶系统;EⅠ—酶Ⅰ;EⅡ—糖特异性渗透酶,包括EⅡA、EⅡB、EⅡC;HPr—含组氨酸的磷载体蛋白;PEP—磷酸烯醇式丙酮酸在PTS中,磷酸烯醇式丙酮酸给EⅠ提供一个磷酸化基团,HPr将磷酸化基团转移给EⅡA,糖最终在EⅡB被磷酸化
1 | SANKARAN R, PARRA CRUZ R A, PAKALAPATI H, et al. Recent advances in the pretreatment of microalgal and lignocellulosic biomass: a comprehensive review[J]. Bioresource Technology, 2020, 298, 122476. |
2 | ZHENG Xiaojie, XIAN Xiaoling, HU Lei, et al. Efficient short-time hydrothermal depolymerization of sugarcane bagasse in one-pot for cellulosic ethanol production without solid-liquid separation, water washing, and detoxification[J]. Bioresource Technology, 2021, 339, 125575. |
3 | YU Hai, GUO Jian, CHEN Yefu, et al. Efficient utilization of hemicellulose and cellulose in alkali liquor-pretreated corncob for bioethanol production at high solid loading by Spathaspora passalidarum U1-58[J]. Bioresource Technology, 2017, 232: 168-175. |
4 | WANG Liang, YORK S W, INGRAM L O, et al. Simultaneous fermentation of biomass-derived sugars to ethanol by a co-culture of an engineered Escherichia coli and Saccharomyces cerevisiae [J]. Bioresource Technology, 2019, 273: 269-276. |
5 | HU Cuimin, WU Siguo, WANG Qian, et al. Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum [J]. Biotechnology for Biofuels, 2011, 4(1): 25-33. |
6 | LIU Hua, HU Huirong, JIN Yuhan, et al. Co-fermentation of a mixture of glucose and xylose to fumaric acid by Rhizopus arrhizus RH7-13-9#[J]. Bioresource Technology, 2017, 233: 30-33. |
7 | FU Hongxin, YANG Shangtian, WANG Minqi, et al. Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing xylose catabolism genes for glucose and xylose co-utilization[J]. Bioresource Technology, 2017, 234: 389-396. |
8 | KIM S M, CHOI B Y, RYU Y S, et al. Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli [J]. Metabolic Engineering, 2015, 30: 141-148. |
9 | DONZELLA L, VARELA J A, SOUSA M J, et al. Identification of novel pentose transporters in Kluyveromyces marxianus using a new screening platform[J]. FEMS Yeast Research, 2021, 21(4). |
10 | 杜仁鹏, 黄守峰, 裴芳艺, 等. 休哈塔假丝酵母木糖还原酶基因(xyl1)的克隆与序列分析[J]. 中国农学通报, 2015, 31(11): 124-129. |
DU Renpeng, HUANG Shoufeng, PEI Fangyi, et al. Cloning and sequence analysis of the xylose reductase gene (xyl1) from Candida shehatae [J]. Chinese Agricultural Science Bulletin, 2015, 31(11): 124-129. | |
11 | CHUPAZA M H, PARK Y R, KIM S H, et al. Bioethanol production from Azolla filiculoides by Saccharomyces cerevisiae, Pichia stipitis, Candida lusitaniae, and Kluyveromyces marxianus [J]. Applied Biochemistry and Biotechnology, 2021, 193: 502-514. |
12 | RECH F R, FONTANA R C, ROSA C A, et al. Fermentation of hexoses and pentoses from sugarcane bagasse hydrolysates into ethanol by Spathaspora hagerdaliae [J]. Bioprocess and Biosystems Engineering, 2019, 42: 83-92. |
13 | SARAVANAN P, RAMESH S, JAYA N, et al. Prospective evaluation of xylitol production using Dabaryomyces hansenii var hansenii, Pachysolen tannophilus, and Candida guillermondii with sustainable agricultural residues[J]. Biomass Conversion and Biorefinery, 2021, 1-19. |
14 | 汤斌, 周逢云, 张庆庆, 等. Candida shehatae的纯化及其利用木糖和葡萄糖发酵的特性研究[J]. 食品科学, 2009, 30(3): 159-162. |
TANG Bin, ZHOU Fengyun, ZHANG Qingqing, et al. Screening of Candida shehatae TZ8-13 converting xylose and glucose into ethanol efficiently and its fermentation characteristics[J]. Food Science, 2009, 30(3): 159-162. | |
15 | AGBOGBO F K, COWARD-KELLY G, TORRY-SMITH M, et al. Fermentation of glucose/xylose mixtures using Pichia stipitis [J]. Process Biochemistry, 2006, 41(11): 2333-2336. |
16 | SELIM K A, EASA S M, EL-DIWANY A I, et al. The xylose metabolizing yeast Spathaspora passalidarum is a promising genetic treasure for improving bioethanol production[J]. Fermentation, 2020, 6(1): 33-45. |
17 | SELIM K A, EL-GHWAS D E, EASA S M, et al. Bioethanol a microbial biofuel metabolite; new insights of yeasts metabolic engineering[J]. Fermentation, 2018, 4(1): 16-43. |
18 | SUN Lingling, WU Bo, ZHANG Zengqin, et al. Cellulosic ethanol production by consortia of Scheffersomyces stipitis and engineered Zymomonas mobilis [J]. Biotechnology for Biofuels, 2021, 14, 221. |
19 | LOPEZ P C, UDUGAMA I A, THOMSEN S T, et al. Promoting the co-utilisation of glucose and xylose in lignocellulosic ethanol fermentations using a data-driven feed-back controller[J]. Biotechnology for Biofuels, 2020, 13, 190. |
20 | 蔡世欣, 李敏, 侯余勇, 等. 芦苇秸秆混合发酵制备乙醇的工艺优化[J]. 化学与生物工程, 2021, 38(2): 26-31, 35. |
CAI Shixin, LI Min, HOU Yuyong, et al. Optimization in preparation process of ethanol from reed straw by mixed fermentation of Saccharomyces cerevisiae and Candida utilis [J]. Chemistry & Bioengineering, 2021, 38(2): 26-31, 35. | |
21 | WANG Fengqin, DONG Yuheng, CHENG Xiang, et al. Effect of detoxification methods on ABE production from corn stover hydrolysate by Clostridium acetobutylicum CICC8016[J]. Biotechnology and Applied Biochemistry, 2020, 67(5): 790-798. |
22 | AGBOGBO F K, WENGER K S. Production of ethanol from corn stover hemicellulose hydrolyzate using Pichia stipitis [J]. Journal of Industrial Microbiology & Biotechnology, 2007, 34: 723-727. |
23 | LI Xiaowei, ZHAO Rui, LI Shan, et al. Global reprogramming of xylose metabolism in Saccharomyces cerevisiae efficiently produces ethanol from lignocellulose hydrolysates[J]. Industrial Crops & Products, 2022, 179, 114666. |
24 | STEPHENS C, CHRISTEN B, FUCHS T, et al. Genetic analysis of a novel pathway for D-xylose metabolism in Caulobacter crescentus [J]. Journal of Bacteriology, 2007, 189(5): 2181-2185. |
25 | ALMQVIST H, GLASER S J, TUFVEGREN C, et al. Characterization of the Weimberg pathway in Caulobacter crescentus [J]. Fermentation, 2018, 4(2): 44-55. |
26 | WASSERSTROM L, PORTUGAL-NUNES D, ALMQVIST H, et al. Exploring D-xylose oxidationin Saccharomyces cerevisiae through the Weimberg pathway[J]. AMB Express, 2018, 8: 33. |
27 | NDUKO J M, MATSUMOTO K, OOI T, et al. Effectiveness of xylose utilization for high yield production of lactate-enriched p(lactate-co-3-hydroxybutyrate) using a lactate-overproducing strain of Escherichia coli and an evolved lactate-polymerizing enzyme[J]. Metabolic Engineering, 2013, 15: 159-166. |
28 | SEKAR R, SHIN H D, DICHRISTINA T J. Activation of an otherwise silent xylose metabolic pathway in Shewanella oneidensis [J]. Applied and Environmental Microbiology, 2016, 82(13): 3996-4005. |
29 | LI Feng, LI Yuanxiu, SUN Liming, et al. Engineering Shewanella oneidensis enables xylose-fed microbial fuel cell[J]. Biotechnology for Biofuels, 2017, 196(10). |
30 | SHEN Lu, KOHLHAAS Martha, ENOKI Junichi, et al. A combined experimental and modelling approach for the Weimberg pathway optimisation[J]. Nature Communications, 2020, 11. |
31 | HALMSCHLAG B, HOFFMANN K, HANKE R, et al. Comparison of isomerase and weimberg pathway for γ-PGA production from xylose by engineered Bacillus subtilis [J]. Frontiers in Bioengineering and Biotechnology, 2020, 7: 476. |
32 | BATOR I, WITTGENS A, ROSENAU F, et al. Comparison of three xylose pathways in Pseudomonas putida KT2440 for the synthesis of valuable products[J]. Frontiers in Bioengineering and Biotechnology, 2020, 7: 480. |
33 | CAO Yujin, NIU Wei, GUO Jiatao, et al. Biotechnological production of 1,2,4-butanetriol: an efficient process to synthesize energetic material precursor from renewable biomass[J]. Scientific Reports, 2015, 5: 18149. |
34 | LIU Min, DING Yamei, XIAN Mo, et al. Metabolic engineering of a xylose pathway for biotechnological production of glycolate in Escherichia coli [J]. Microbial Cell Factories, 2018, 17(1): 51-62. |
35 | CAO Yujin, XIAN Mo, ZOU Huibin, et al. Metabolic engineering of Escherichia coli for the production of xylonate[J]. PLoS ONE, 2013, 8(7): e67305. |
36 | BRÜSSELER C, SPATH A, SOKOLOWSKY S, et al. Alone at last! Heterologous expression of a single gene is sufficient for establishing the five-step Weimberg pathway in Corynebacterium glutamicum complete oxidation of xylose for bioelectricity generation by reconstructing a bacterial xylose utilization pathway in vitro[J]. Metabolic Engineering Communications, 2019, 9: e00090. |
37 | 高歌. 谷氨酸棒杆菌利用木糖合成L-鸟氨酸的代谢工程改造研究[D]. 上海: 华东理工大学, 2020. |
GAO Ge. Research on metabolic engineering of using xylose to synthesize L-ornithine[D]. Shanghai: East China University of Science and Technology, 2020. | |
38 | CAM Y, ALKIM C, TRICHEZ D, et al. Engineering of a synthetic metabolic pathway for the assimilation of (D)-xylose into value-added chemicals[J]. ACS Synthetic Biology, 2015, 5(7): 607-618. |
39 | PEREIRA B, LI Zhengjun, DE MEY M, et al. Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate[J]. Metabolic Engineering, 2016, 34: 80-87. |
40 | URANUKUL B, WOOLSTON B M, FINK G R, et al. Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes[J]. Metabolic Engineering, 2019, 51: 20-31. |
41 | CHOMVONG K, BAUER S, BENJAMIN D I, et al. Bypassing the pentose phosphate pathway: towards modular utilization of xylose[J]. PLoS ONE, 2016, 11(6): e0158111. |
42 | LI Qingyan, ZHAO Peng, YIN Hang, et al. CRISPR interference-guided modulation of glucose pathways to boost aconitic acid production in Escherichia coli [J]. Microbial Cell Factories, 2020, 19(1): 174-187. |
43 | KLINGNER A, BARTSCH A, DOGS M, et al. Large-scale 13C flux profiling reveals conservation of the entner-doudoroff pathway as a glycolytic strategy among marine bacteria that use glucose[J]. Applied and Environmental Microbiology, 2015, 81: 2408-2422. |
44 | LIU Hua, WANG Weinan, DENG Li, et al. High production of fumaric acid from xylose by newly selected strain Rhizopus arrhizus RH7-13-9#[J]. Bioresource Technology, 2015, 186: 348-350. |
45 | LEE T C, XIONG Wencheng, PADDOCK T, et al. Engineered xylose utilization enhances bio-products productivity in the Cyanobacterium Synechocystis sp. PCC6803[J]. Metabolic Engineering, 2015, 30: 179-189. |
46 | CHEN Zhen, HUANG Jinhai, WU Yao, et al. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose[J]. Metabolic Engineering, 2017, 39: 151-158. |
47 | 祖金珊, 徐世文, 陆信曜, 等. 整合型1, 2, 4-丁三醇重组菌的构建及共底物发酵[J]. 应用与环境生物学报, 2019, 25(4): 0966-0971. |
ZU Jinshan, XU Shiwen, LU Xinyao, et al. Construction of a 1, 2, 4-butanetriol-integrated strain and fermentation of its co-substrate[J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(4): 0966-0971. | |
48 | 陈雪松, 杨胜利. 高产木糖醇菌株的诱变选育及其发酵培养基优化[J]. 上海化工, 2021, 46(1): 11-15. |
CHEN Xuesong, YANG Shengli. Mutagenesis breeding on high-productive strain of xylitol and optimization of its fermentation medium[J]. Shanghai Chemical Industry, 2021, 46(1): 11-15. | |
49 | CHIANG C J, LEE H M, GUO Hanjie, et al. Systematic approach to engineer Escherichia coli pathways for co-utilization of a glucose-xylose mixture[J]. Journal of Agricultural and Food Chemistry, 2013, 61: 7583-7590. |
50 | 张佳. 通过基因工程改造马克思克鲁维酵母实现高温高产木糖醇和乙醇[D]. 合肥: 中国科学技术大学, 2017. |
ZHANG Jia. Xylitol or ethanol production at high temperature by engineered Kluyveromyces marxianus [D]. Hefei: University of Science and Technology of China, 2017. | |
51 | ZHANG Biao, REN Lili, ZHAO Zepeng, et al. High temperature xylitol production through simultaneous co-utilization of glucose and xylose by engineered Kluyveromyces marxianus [J]. Biochemical Engineering Journal, 2021, 165: 10782. |
52 | LEDESMA-AMARO R, LAZAR Z, Rakicka M, et al. Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose[J]. Metabolic Engineering, 2016, 38: 115-124. |
53 | 张艳芬. 产油酵母筛选及其利用葡萄糖和木糖的产油特性[D]. 呼和浩特: 内蒙古大学, 2014. |
ZHANG Yanfen. The screening of olegious yeasts and the oil production characteristics in the using of glucose and xylose[D]. Hohhot: Inner Mongolia University, 2014. | |
54 | HUANG Chao, CHEN Xuefang, YANG Xiaoyan, et al. Bioconversion of corncob acid hydrolysate into microbial oil by the oleaginous yeast Lipomyces starkeyi [J]. Applied Biochemistry and Biotechnology, 2014, 172(4): 2197-2204. |
55 | FANG Junnan, HUAN Chenchen, LIU Yang, et al. Bioconversion of agricultural waste into poly-γ-glutamic acid in solid-state bioreactors at different scales[J]. Waste Management, 2020, 10(2): 939-948. |
56 | WEN Shuang, LIU Luo, NIE Kaili, et al. Enhanced fumaric acid production by fermentation of xylose using a modified strain of Rhizopusarrhizus [J]. BioResources, 2013, 8(2): 2186-2194. |
57 | ZHOU Zhengxiong, DU Guocheng, HUA Zhaozhe, et al. Optimization of fumaric acid production by Rhizopus delemar based on the morphology formation[J]. Bioresource Technology, 2011, 102(20): 9345-9349. |
58 | 潘丽军, 庞锐, 吴学凤, 等. 葡萄糖和木糖共发酵生产L-乳酸的培养基和培养条件响应面优化[J]. 食品科学, 2011, 32(9): 140-145. |
PAN Lijun, PANG Rui, WU Xuefeng, et al. Optimization of co-fermentation of glucose and xylose for L-lactic acid production using response surface methodology[J]. Food Science, 2011, 32(9): 140-145. | |
59 | 姜珊. 利用木质纤维素高温生产乳酸的研究[D]. 上海: 上海交通大学, 2019. |
JIANG Shan. High temperature production of lactic acid from lignocellulose [D]. Shanghai: Shanghai JiaoTong University, 2019. | |
60 | ZHANG Yuming, CHEN Xiangrong, LUO Jianquan, et al. An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22[J]. Bioresource Technology, 2014(158): 396-399. |
61 | WANG Yujue, CAO Weifeng, LUO Jianquan, et al. One step open fermentation for lactic acid production from inedible starchy biomass by thermophilic Bacillus coagulans IPE22[J]. Bioresource Technology, 2019(272): 398-406. |
62 | FU Hongxin, YU Le, LIN Meng, et al. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose[J]. Metabolic Engineering, 2017, 40: 50-58. |
63 | ABDEL-RAHMAN M A, XIAO Yaotian, TASHIRO Y, et al. Fed-batch fermentation for enhanced lactic acid production from glucose/xylose mixture without carbon catabolite repression[J]. Journal of Bioscience and Bioengineering, 2015, 119(2): 153-158. |
64 | JIN Yongsu, CATE J H. Metabolic engineering of yeast for lignocellulosic biofuel production[J]. Current Opinion in Chemical Biology, 2017, 41: 99-106. |
65 | AZHAR S H M, ABDULLA R, JAMBO S A, et al. Yeasts in sustainable bioethanol production: a review[J]. Biochemistry and Biophysics Reports, 2017, 10: 52-61. |
66 | WAHLBOM C F, VAN ZYL W H, JONSSON L J, et al. Generation of the improves recombinant xylose-utilizing S. cerevisiae TMB 3400 by random mutagenesis and physiological comparison with P. stipitis CBS6054[J]. FEMS Yeast Research, 2003, 3(3): 319-326. |
67 | SHI N Q, DAVIS B, SHERMAN F, et al. Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production[J]. Yeast, 1999(15): 1021-1030. |
68 | WATANABE S, SAWAYAMA S. Pentose transporter: US 20120270290[P]. 2012-10-25. |
69 | LI Lulu, ZHANG Ling, WANG Dongmei, et al. Identification of a xylitol dehydrogenase gene from Kluyveromyces marxianus NBRC1777[J]. Molecular Biotechnology, 2013, 53(2): 159-169. |
70 | ZHANG Biao, ZHANG Ling, WANG Dongmei, et al. Identification of a xylose reductase gene in the xylose metabolic pathway of Kluyveromycesmarxianus NBRC1777[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(12): 2001-2010. |
71 | WANG Rongliang, ZHANG Ling, WANG Dongmei, et al. Identification of a xylulokinase catalyzing xylulose phosphorylation in the xylose metabolic pathway of Kluyveromyces marxianus NBRC1777[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(10): 1739-1746. |
72 | 韩锡铜, 高教琪, 陈丽杰, 等. Kluyveromyces marxianus 发酵己糖和戊糖生产乙醇[J]. 生物加工过程, 2015, 13(1): 6-11. |
HAN Xitong, GAO Jiaoqi, CHEN lijie, et al. Ethanol production from hexose and pentose by Kluyveromyces marxianus [J]. Chinese Journal of Bioprocess Engineering, 2015,13(1): 6-11. | |
73 | 王金保. 重组大肠杆菌生物合成D-1, 2, 4-丁三醇的系统优化[D]. 北京: 北京理工大学, 2017. |
WANG Jinbao. Systematic optimization of synthetic pathways for D-1,2,4-butanetriol production by recombinant E. coli[D]. Beijing: Beijing Institute of Technology, 2017. | |
74 | VALDEHUESA K N G, LIU Huaiwei, RAMOS K R M, et al. Direct bioconversion of D-xylose to 1,2,4-butanetriol in an engineered Escherichia coli [J]. Process Biochemistry, 2014, 49(1): 25-32. |
75 | 孙雷, 杨帆, 朱泰承, 等. 大肠杆菌合成1,2,4-丁三醇的途径优化[J]. 生物工程学报, 2016, 32(1): 51-63. |
SUN Lei, YANG Fan, ZHU Taicheng, et al. Optimization of 1, 2, 4-butanetriol synthetic pathway in Escherichia coli [J]. Chinese Journal of Biotechnology, 2016, 32(1): 51-63. | |
76 | DIEN B S, NICHOLS N N, BOTHAST R J. Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of L-lactic acid[J]. Journal of Industrial Microbiology & Biotechnology, 2002, 29(5): 221-227. |
77 | 何姝颖, 诸葛斌, 陆信曜, 等. 副产物途径的缺失对大肠杆菌合成D-1,2,4-丁三醇的影响[J]. 微生物学通报, 2017, 44(1): 30-37. |
HE Shuying, ZHUGE Bin, LU Xinyao, et al. Influence of the deficiency of by-product pathways on biosynthesis of D-1,2,4-butanetriol in Escherichia coli [J]. Microbiology China, 2017, 44(1): 30-37. | |
78 | 李玉石, 刘郁青, 杨程雨, 等. 代谢改造克雷伯氏菌合成 D-1,2,4-丁三醇[J]. 微生物学通报, 2020, 47(8): 2505-2515. |
LI Yushi, LIU Yuqing, YANG Chengyu, et al. Production of D-1, 2, 4-butanetriol by engineering Klebsiella pneumoniae [J]. Microbiology China, 2020, 47(8): 2505-2515. | |
79 | YUKAWA T, BAMBA T, GUIRIMAND G, et al. Optimization of 1,2,4-butanetriol production from xylose in Saccharomyces cerevisiae by metabolic engineering of NADH/NADPH balance[J]. Biotechnology and Bioengineering, 2020: 1-11. |
80 | 秦海青, 邱学良, 王成福, 等. 酵母发酵生产木糖醇的研究[J]. 中国食品添加剂, 2013(3): 152-157. |
QIN Haiqing, QIU Xueliang, WANG Chengfu, et al. Research on xylitol production by yeast[J]. Chinese Food Additives, 2013(3): 152-157. | |
81 | SU Buli, WU Mianbin, LIN Jianping, et al. Metabolic engineering strategies for improving xylitol production from hemicellulosic sugars[J]. Biotechnology Letters, 2013, 35(11): 1781-1789. |
82 | GUMBI S T, KUMAR A, OLANIRAN A O. Lipid productivity and biosynthesis gene response of indigenous microalgae Chlorella sp.T4 strain for biodiesel production under different nitrogen and phosphorus load[J]. BioEnergy Research, 2022: 1-12. |
83 | CHO H U, PARK J M. Biodiesel production by various oleaginous microorganisms from organic wastes[J]. Bioresource Technology, 2018, 256: 502-508. |
84 | YANG Yan, HEIDARI F, HU Bo. Fungi(mold)-based lipid production[J]. Methods in Molecular Biology, 2019, 1995: 51-89. |
85 | SITEPU I R, GARAY L A, SESTRIC R, et al. Oleaginous yeasts for biodiesel: current and future trends in biology and production[J]. Biotechnology Advances, 2014, 32(7): 1336-1360. |
86 | GILL C, HALL M, RATLEDGE C. Lipid accumulation in an oleaginous yeast (Candida 107) growing on glucose in single-stage continuous culture[J]. Applied and Environmental Microbiology, 1977, 33(2): 231-239. |
87 | QIN Lei, LIU Lu, ZENG Anping, et al. From low-cost substrates to single cell oils synthesized by oleaginous yeasts[J]. Bioresource Technology, 2017, 245: 1507-1519. |
88 | 孔祥莉, 刘波, 赵宗保, 等. 斯达氏油脂酵母利用混合糖发酵产油脂[J]. 生物加工过程, 2007, 5(2): 36-41. |
KONG Xiangli, LIU Bo, ZHAO Zongbao, et al. Microbial production of lipids by co-fermentation of glucose and xylose with Lipomyces starkeyi [J]. Chinese Journal of Bioprocess Engineering, 2007, 5(2): 36-41. | |
89 | SITEPU I R, JIN Mingjie, FERNANDEZ J E, et al. Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover[J]. Applied Microbiology and Biotechnology, 2014, 98(17): 7645-7657. |
90 | QIU Yimin, WANG Qin, ZHU Chengjun, et al. Deciphering metabolic responses of biosurfactant lichenysin on biosynthesis of poly-γ- glutamic acid[J]. Applied Microbiology and Biotechnology, 2019, 103(5): 4003-4015. |
91 | FENG Jun, GU Yanyan, QUAN Yufen, et al. Construction of energy-conserving sucrose utilization pathways for improving poly-γ-glutamic acid production in Bacillus amyloliquefaciens [J]. Microbial Cell Factories, 2017, 16(98): 1-13. |
92 | FENG Jun, QUAN Yufen, GU Yanyan, et al. Enhancing poly-γ- glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum [J]. Microbial Cell Factories, 2017, 16(88): 1-12. |
93 | FENG Jun, GU Yanyan, QUAN Yufen, et al. Improved poly-γ- glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering[J]. Metabolic Engineering, 2015, 32(6): 106-115. |
94 | SAHA B C. Hemicellulose bioconversion[J]. Journal of Industrial Microbiology & Biotechnology, 2003, 30: 279-291. |
95 | ENGEL C A ROA, VAN GULIK W M, MARANG L, et al. Development of a low pH fermentation strategy for fumaric acid production by Rhizopus oryzae [J]. Enzyme and Microbial Technology, 2011, 48(1): 39-47. |
96 | ZHOU Yuqing, NIE Kaili, ZHANG Xin, et al. Production of fumaric acid from biodiesel-derived crude glycerol by Rhizopus arrhizus [J]. Bioresource Technology, 2014, 163: 48-53. |
97 | KAUTOLA H, LINKO Y Y. Fumaric acid production from xylose by immobilized Rhizopus arrhizus cells[J]. Applied Microbiology and Biotechnology, 1989, 31(5): 448-452. |
98 | YE Lidan, ZHOU Xingding, HUDARI M S B, et al. Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106[J]. Bioresource Technology, 2013,132: 38-44. |
99 | LI Haibo, SCHMITZ O, ALPER H S. Enabling glucose/xylose co-transport in yeast through the directed evolution of a sugar transporter[J]. Applied Microbiology and Biotechnology, 2016, 100(23): 10215-10223. |
100 | TANG Ruiqi, WAGNER J M, ALPER H S, et al. Design, evolution, and characterization of a xylose biosensor in Escherichia coli using the XylR/xylO system with an expanded operating range[J]. ACS Synthetic Biology, 2020, 9(10): 2714-2722. |
101 | TRAN P H N, KO J K, GONG J, et al. Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery[J]. Biotechnology for Biofuels, 2020, 13: 12. |
102 | DIAZ C A C, BENNETT R K, PAPOUTSAKIS E T, et al. Deletion of four genes in Escherichia coli enables preferential consumption of xylose and secretion of glucose[J]. Metabolic Engineering, 2019, 52: 168-177. |
103 | WU Youduo, XUE Chuang, CHEN Lijie, et al. Synergistic effect of calcium and zinc on glucose/xylose utilization and butanol tolerance of Clostridium acetobutylicum [J]. FEMS Microbiology Letters, 2016, 363(5): fnw023. |
104 | JOJIMA T, OMUMASABA C, INUI M, et al. Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook[J]. Applied Microbiology and Biotechnology, 2010, 85(3): 471-480. |
105 | NIJLAND J G, VOS E, SHIN H Y, et al. Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae [J]. Biotechnology for Biofuels, 2016, 9: 158. |
106 | HAMACHER T, BECKER J, GÁRDONYI M, et al. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization[J]. Microbiology, 2002, 148(9): 2783-2788. |
107 | SEDLAK M, HO N W Y. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast [J]. Yeast, 2004, 21(8): 671-684. |
108 | SALOHEIMO A, RAUTA J, STASYK O, et al. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases[J]. Applied Microbiology and Biotechnology, 2007, 74(5): 1041-1052. |
109 | YOUNG E, POUCHER A, COMER A, et al. Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host[J]. Applied and Environmental Microbiology, 2011, 77(10): 3311-3319. |
110 | NADAI C, CROSATO G, GIACOMINI A, et al. Different gene expression patterns of hexose transporter genes modulate fermentation performance of four Saccharomyces cerevisiae strains[J]. Fermentation, 2021, 7(3): 164-181. |
111 | SHIN H Y, NIJLAND J G, DE WAAL P P, et al. An engineered cryptic Hxt11sugar transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae [J]. Biotechnology for Biofuels, 2015, 8: 176. |
112 | 蔡艳青, 齐显尼, 齐奇, 等. 敲除MIG1和SNF1基因对酿酒酵母共利用葡萄糖和木糖的影响[J]. 生物工程学报, 2018, 34(1): 54-67. |
CAI Yanqing, QI Xianni, QI Qi, et al. Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae [J]. Chinese Journal of Biotechnology, 2018, 34(1): 54-67. | |
113 | GAO Weixia, HE Yulian, ZHANG Fang, et al. Metabolic engineering of Bacillus Amyloliquefaciens WLL3 for enhanced poly-γ-glutamic acid synthesis[J]. Microbial Biotechnology, 2019, 12(5): 932-945. |
114 | ZHANG Bobo, LU Liping, XU Ganrong. Why solid-state fermentation is more advantageous over submerged fermentation for converting high concentration of glycerol into Monacolin K by Monascus purpureus 9901: a mechanistic study[J]. Journal of Biotechnology, 2015, 206: 60-65. |
115 | MUKIYAT C, EVELYN E, BAHRI S, et al. A novel immobilization method of Saccharomyces cerevisiae on fermentation of nipa palm sap for fuel grade bioethanol production[J]. Key Engineering Materials, 2020, 849: 53-57. |
116 | GAO Hao, LU Jiasheng, JIANG Yujia, et al. Material-mediated cell immobilization technology in the biological fermentation process[J]. Biofuels Bioproducts & Biorefining, 2021, 15: 1160-1173. |
117 | XU Lei, TSCHIRNER U. Immobilized anaerobic fermentation for biofuel production by Clostridium co-culture[J]. Bioprocess and Biosystems Engineering, 2014, 37(8): 1551-1559. |
118 | EVRIM GÜNEŞ A. Ethanol production from starch by co-immobilized amyloglucosidase——Zymomonas Mobilis cells in a continuously-stirred bioreactor[J]. Biotechnology & Biotechnological Equipment, 2013, 27(1): 3506-3512. |
119 | VALDEZ-VAZQUEZA I, CASTILLO-RUBIO L G, PÉREZ-RANGEL M, et al. Enhanced hydrogen production from lignocellulosic substrates via bioaugmentation with Clostridium strains[J]. Industrial Crops & Products, 2019, 137: 105-111. |
120 | ABE A, FURUKAWA S, WATANABE S, et al. Yeasts and lactic acid bacteria mixed-specie biofilm formation is a promising cell immobilization technology for ethanol fermentation[J]. Applied Biochemistry and Biotechnology, 2013, 171: 72-79. |
121 | 江枫, 房伶晏, 王浩, 等. 固定化混合菌利用戊糖和己糖共发酵制备乙醇[J]. 林业工程学报, 2017, 2(4): 90-95. |
JIANG Feng, FANG Lingyan, WANG Hao, et al. Co-fermentation of pentose and hexose to ethanol by immobilized mixed yeasts method[J]. Journal of Forestry Engineering, 2017, 2(4): 90-95. | |
122 | FERREIRA J, SANTOS V A Q, CRUZ C H G. Ethanol production by co-culture of Zymomonas mobilis and Pachysolen tannophilus using banana peels hydrolysate as substrate[J]. Acta Scientiarum Technology, 2018, 40(1): 35169. |
123 | LI Feng, YIN Changyi, SUN Liming, et al. Synthetic Klebsiella pneumoniae-Shewanella oneidensis consortium enables glycerol-fed high-performance microbial fuel cells[J]. Biotechnology Journal, 2018, 13(5): 1700491. |
124 | LI Feng, AN Xingjuan, WU Deguang, et al. Engineering microbial consortia for high-performance cellulosic hydrolyzates-fed microbial fuel cells [J]. Frontiers in Microbiology, 2019, 10: 409. |
125 | LIN Tong, BAI Xue, HU Yidan, et al. Synthetic Saccharomyces cerevisiae-Shewanella oneidensis consortium enables glucose-fed high-performance microbial fuel cell[J]. AIChE Journal, 2017, 63(6): 1830-1838. |
126 | ZHANG Yixing, VADLANI P V. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum [J]. Journal of Bioscience and Bioengineering, 2015, 119(6): 694-699. |
127 | SAINI M, LIN Liju, CHIANG C J, et al. Synthetic consortium of Escherichia coli for n-butanol production by fermentation of the glucose-xylose mixture[J]. Journal of Agricultural and Food Chemistry, 2017, 65: 10040-10047. |
128 | WEN Zhiqiang, MINTON N P, ZHANG Ying, et al. Enhanced solvent production by metabolic engineering of a twin-clostridial consortium[J]. Metabolic Engineering, 2017, 39: 38-48. |
129 | THEIRI M, CHADJAA H, MARINOVA M, et al. Development of sequential and simultaneous bacterial cultures to hydrolyse and detoxify wood pre-hydrolysate for enhanced acetone-butanol-ethanol (ABE) production[J]. Enzyme and Microbial Technology, 2020, 133: 109438. |
130 | SU Yikai, WILLIS L B, REHMANN L, et al. Spathaspora passalidarum selected for resistance to AFEX hydrolysate shows decreased cell yield[J]. FEMS Yeast Research, 2018, 18(6): 1-13. |
131 | 张影, 苟敏, 孙照勇, 等. 混合糖发酵条件下甲酸抑制木糖发酵的机制[J]. 应用和环境生物学报, 2017, 23(6): 0990-0998. |
ZHANG Yin, GOU Min, SUN Zhaoyong, et al. The inhibitory mechanism of formic acid on xylose fermentation during mixed sugar fermentation[J]. Chinese Journal of Applied and Environmental Biology, 2017, 23(6): 0990-0998. | |
132 | JIN Xianchun, MA Jiangshan, SONG Jianing, et al. Promoted bioethanol production through fed-batch semisimultaneous saccharification and fermentation at a high biomass load of sodiumcarbonate-pretreated rice straw[J]. Energy, 2021, 226: 120353. |
133 | ZHANG Zhenting, LI Yanan, ZHANG Jianguo, et al. High-titer lactic acid production by Pediococcus acidilactici PA204 from corn stover through fed-batch simultaneous saccharification and fermentation[J]. Microorganisms, 2020, 8(10): 1491-1500. |
134 | DU Cong, LI Yimin, ZONG Han, et al. Production of bioethanol and xylitol from non-detoxified corn cob via a two-stage fermentation strategy[J]. Bioresource Technology, 2020, 310: 123427. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[3] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[4] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[5] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[6] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[7] | 舒斌, 陈建宏, 熊健, 吴其荣, 喻江涛, 杨平. 碳中和目标下推动绿色甲醇发展的必要性分析[J]. 化工进展, 2023, 42(9): 4471-4478. |
[8] | 王雪婷, 顾霞, 徐先宝, 赵磊, 薛罡, 李响. 水热预处理对餐厨垃圾厌氧发酵产戊酸的影响[J]. 化工进展, 2023, 42(9): 4994-5002. |
[9] | 韩恒文, 韩伟, 李明丰. 烯烃水合反应工艺与催化剂研究进展[J]. 化工进展, 2023, 42(7): 3489-3500. |
[10] | 刘洋, 叶小梅, 苗晓, 王成成, 贾昭炎, 曹春晖, 奚永兰. 农村有机生活垃圾干发酵氨胁迫下中试工艺[J]. 化工进展, 2023, 42(7): 3847-3854. |
[11] | 秦凯, 杨仕林, 李俊, 储震宇, 薄翠梅. 基于卡尔曼滤波算法的葡萄糖酶生物传感器高精度检测方法[J]. 化工进展, 2023, 42(6): 3177-3186. |
[12] | 王子健, 柯明, 宋昭峥, 李佳涵, 童燕兵, 孙巾茹. 分子筛催化汽油烷基化降苯技术研究进展[J]. 化工进展, 2023, 42(5): 2371-2389. |
[13] | 吕学东, 罗发亮, 林海涛, 宋丹青, 刘义, 牛瑞雪, 郑柳春. 聚丁二酸丁二醇酯的合成工艺及气体阻隔性最新进展[J]. 化工进展, 2023, 42(5): 2546-2554. |
[14] | 赵尧, 周志辉, 吴红丹, 胡传智, 张国春, 吴睿鹏. Silicalite-1分子筛膜渗透蒸发条件的响应面分析与优化[J]. 化工进展, 2023, 42(5): 2586-2594. |
[15] | 黄能坤, 王梓雯, 王文耕, 王学峰, 谈继淮, 朱新宝. 新型氢化二聚酸乙二醇醚酯的合成及其增塑PVC性能[J]. 化工进展, 2023, 42(5): 2638-2646. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |