1 |
董训赞, 赵永腾, 余旭亚. 褪黑素诱导糖蜜废醪液培养单针藻Monoraphidium sp. FXY-10产生物燃料[J]. 化工进展, 2019, 38(5): 2421-2428.
|
|
DONG Xunzan, ZHAO Yongteng, YU Xuya. Research on the biofuels production of Monoraphidium sp. FXY-10 by combined melatonin and molasses wastewater[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2421-2428.
|
2 |
吕旭, 孙仁胜, 张红兵. 微藻规模培养技术研究进展[J]. 应用化工, 2019, 48(6): 1487-1490.
|
|
LÜ Xu, SUN Rensheng, ZHANG Hongbing. Development of mass cultivation technology for microalgae[J]. Applied Chemical Industry, 2019, 48(6): 1487-1490.
|
3 |
HOH D, WATSON S, KAN E. Algal biofilm reactors for integrated wastewater treatment and biofuel production: a review[J]. Chemical Engineering Journal, 2016, 287: 466-473.
|
4 |
TAN C H, CHEN C-Y, SHOW P L, et al. Strategies for enhancing lipid production from indigenous microalgae isolates[J]. Journal of the Taiwan Institute of Chemical Engineers,2016, 63: 189–194.
|
5 |
郭沛, 马荣江, 余南阳, 等. 基于微藻培养的沼液处理相关耦合技术进展[J]. 化工进展, 2019, 38(2): 1027-1037.
|
|
GUO Pei, MA Rongjiang, YU Nanyang, et al. Recent progress in coupling technologies of biogas slurry treatment based on microalgae cultivation[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 1027-1037.
|
6 |
冯贞, 方晓璞. 核桃加工副产物综合利用途径[J]. 中国油脂, 2018, 43(9): 71-74.
|
|
FENG Zhen, FANG Xiaopu. Comprehensive utilization ways of by-products from walnut processing[J]. China Oils and Fats, 2018, 43(9): 71-74.
|
7 |
张双杰, 邢宝林, 黄光许, 等. 核桃壳水热炭对六价铬的吸附特性[J]. 化工进展, 2016, 35(3):950-956.
|
|
ZHANG Shuangjie, XING Baolin, HUANG Guangxu, et al. A study on adsorption of Cr(Ⅵ) by hydrothermal carbon from walnut shell[J]. Chemical Industry and Engineering Progress, 2016, 35(3):950-956.
|
8 |
郑渝川, 黄仲华, 黄伊嘉, 等. 3种核桃副产物多酚提取液的体外抗氧化活性分析[J]. 四川林业科技, 2019, 40(1): 15-19.
|
|
ZHENG Yuchuan, HUANG Zhonghua, HUANG Yijia, et al. A study of antioxidant activity in vitro of three kinds of walnut by-product polyphenol extracts[J]. Journal of Sichuan Forestry Science and Technology, 2019, 40(1): 15-19.
|
9 |
OUYANG H, HOU K, PENG W, et al. Antioxidant and xanthine oxidase inhibitory activities of total polyphenols from onion[J]. Saudi Journal of Biological Sciences, 2018, 25: 1509-1513.
|
10 |
ZHAO Y, WANG H, HAN B, et al. Coupling of abiotic stresses and phytohormonesfor the production of lipids and high-value by-products by microalgae: a review[J]. Bioresource Technology, 2019, 274: 549-556.
|
11 |
CHENG J, XU J, LU H, et al. Generating cycle flow between dark and light zones with double paddlewheels to improve microalgal growth in a flatplate photo-bioreactor[J]. Bioresource Technology,2018, 261: 151–157.
|
12 |
卫晴, 郑凌凌, 卢哲, 等. 两株绿藻响应CO2浓度变化的生长和生理特性的研究[J]. 水生生物学报, 2018, 42 (1): 182-189.
|
|
WEI Qing, ZHENG Lingling, LU Zhe, et al. The growth and physiological responses of two green algae to the change of CO2 concentration[J]. Acta Hydrobiologica Sinica, 2018, 42 (1): 182-189.
|
13 |
ZHAO Y, LI D, DING K, et al. Production of biomass and lipids by the oleaginous microalgae Monoraphidium sp. QLY-1 through heterotrophic cultivation and photo-chemical modulator induction[J]. Bioresource Technology, 2016, 211: 669-676.
|
14 |
ZHAO Y, LI D, XU J W, et al. Melatonin enhances lipid production in, Monoraphidium sp. QLY-1 under nitrogen deficiency conditions via a multi-level mechanism[J]. Bioresource Technology, 2018, 259: 46-53.
|
15 |
KETHEESAN B, NIRMALAKHANDAN N. Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor[J]. Bioresource Technology, 2012, 108: 196-202.
|
16 |
NIKESH K, AJAY B, RENU G. Shear rate and mass transfer coefficient in internal loop airlift reactors involving non-Newtonian fluids[J]. Chemical Engineering Research and Design, 2018, 136: 315-323.
|
17 |
PAZ-YÉPEZ C, PEINADO I, HEREDIA A, et al. Lipids digestibility and polyphenols release under in vitro digestion of dark, milk and white chocolate[J]. Journal of Functional Foods, 2019, 52: 196-203.
|
18 |
CHE R, HUANG L, XU J W, et al. Effect of fulvic acid induction on the physiology, metabolism, and lipid biosynthesis-related gene transcription of Monoraphidium sp. FXY-10[J]. Bioresource Technology, 2017, 227: 324-334.
|
19 |
CHE R, DING K, HUANG L, et al. Enhancing biomass and oil accumulation of Monoraphidium sp. FXY-10 by combined fulvic acid and two-step cultivation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67: 161-165.
|
20 |
JIANG L, LUO S, FAN X, et al. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2[J]. Applied Energy, 2011, 88(10): 3336-3341.
|
21 |
MANORANJAN N, ANKUSH K, RAMKRISHNA S. Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application[J]. Algal Research, 2016, 16: 216-223.
|
22 |
郭琪, 郑凌凌, 沈伟, 等. 不同二氧化碳浓度培养对两株栅藻碳固定速率及油脂积累的影响[J]. 水生生物学报, 2016, 40(2): 414-418.
|
|
GUO Qi, ZHENG Lingling, SHEN Wei, et al. Effect of different CO2 concentration on CO2 fixation and lipid accumulation of two strains of Scenedsmus sp.[J]. Acta Hydrobiologica Sinica, 2016, 40(2):414-418.
|
23 |
李琴, 陈三凤. 适于猪场污水中快速生长富油微藻的筛选[J]. 农业生物技术学报, 2016, 24(7): 1083-1091.
|
|
LI Qin, CHEN Sanfeng. Screening of oil-rich microalgae grown rapidly in swine farm wastewater[J]. Journal of Agricultural Biotechnology, 2016, 24(7): 1083-1091.
|
24 |
马红芳,李鑫,胡洪营, 等. 栅藻LX1在水产养殖废水中的生长、脱氮除磷和油脂积累特性[J]. 环境科学, 2012, 33(6): 1891-1896.
|
|
MA Hongfang, LI Xin, HU Hongying, et al. Growth, removal of nitrogen and phosphorus, and lipid accumulation property of Scenedesmus sp. LX1 in aquaclture wastewater[J]. Environmental Sciences, 2012, 33(6): 1891-1896.
|
25 |
GHOSH A, KIRAN B. Carbon concentration in algae: reducing CO2 from exhaust gas[J]. Trends Biotechnol. 2017, 35 (9): 806-880.
|
26 |
PEI H, JIANG L, HOU Q, et al. Toward facilitating microalgae cope with effluent from anaerobic digestion of kitchen waste: the art of agricultural phytohormones[J]. Biotechnology for Biofuels, 2017, 10: 76-93.
|
27 |
GUO Y, YUAN Z, XU J, et al. Metabolic acclimation mechanism in microalgae developed for CO2 capture from industrial flue gas[J]. Algal Research, 2017, 26: 225-233.
|
28 |
LU Y, DU Y, QIN X, et al. Comprehensive evaluation of effective polyphenols in apple leaves and their combinatory antioxidant and neuroprotective activities[J]. Industrial Crops and Products, 2019, 129: 242-252.
|
29 |
LI D, ZHAO Y, DING W, et al. A strategy for promoting lipid production in green microalgae, Monoraphidium, sp. QLY-1 by combined melatonin and photoinduction[J]. Bioresource Technology, 2017, 235:104-112.
|
30 |
梅连阔, 魏强强, 张惠斌, 等.乙酰辅酶A羧化酶抑制剂的研究进展[J]. 中国药科大学学报, 2019, 50(3):253-264.
|
|
MEI Liankuo, WEI Qiangqiang, ZHANG Huibin, et al. Research progress in acetyl-CoA carboxylase inhibitors[J]. Journal of China Pharmaceutical University, 2019, 50(3):253-264.
|
31 |
程万, 林辉, 赵宇华, 等. 苹果酸酶调控微生物油脂积累的研究进展[J]. 科技通报, 2010, 26(6): 853-857.
|
|
CHENG Wan, LIN Hui, ZHAO Yuhua, et al. Research progress on malic enzyme regulating the accumulation of microbial oils[J]. Bulletin of Science and Technology, 2010, 26(6): 853-857.
|
32 |
XUE J, NIU Y F, HUANG T, et al. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation[J]. Metabolic Engineering, 2015, 27: 1-9.
|
33 |
张金飞, 李霞, 何亚飞, 等. 外源葡萄糖增强高表达转玉米C4型pepc水稻耐旱性的生理机制[J]. 作物学报, 2018(1):82-94.
|
|
ZHANG Jinfei, LI Xia, HE Yafei, et al. Physiological mechanism on drought tolerance enhanced by exogenous glucose in C4-pepc rice[J]. Acta Agronomica Sinica, 2018(1): 82-94.
|
34 |
王琳, 余旭亚, 赵鹏, 等. 微藻油脂生物合成与ACCase、PEPC相关性的研究进展[J]. 中国油脂, 2013, 38(2):56-60.
|
|
WANG Lin, YU Xuya, ZHAO Peng, et al. Progress in relativity of lipid synthesis of microalgae with ACCase and PEPC[J]. China Oils and Fats, 2013, 38(2):56-60.
|
35 |
YANG J, PAN Y, BOWLER C, et al. Knockdown of phosphoenolpyruvate carboxykinase increases carbon flux to lipid synthesis in Phaeodactylum tricornutum[J]. Algal Reserach, 2016, 15: 50-58.
|
36 |
IKARAN Z, SUÁREZ-ALVAREZ S, URRETA I, et al. The effect of nitrogen limitation on the physiology and metabolism of Chlorella vulgaris var L3[J]. Algal Research, 2015, 10: 134-144.
|
37 |
YU X, ZHAO P, HE C, et al. Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock[J]. Bioresource Technology, 2012, 121: 256-262.
|