1 |
CAI Y LI C, WU D, et al. Highly active MgO nanoparticles for simultaneous bacterial inactivation and heavy metal removal from aqueous solution[J]. Chemical Engineering Journal, 2017, 312: 158-166.
|
2 |
WANG J, CHEN C. Biosorbents for heavy metals removal and their future[J]. Biotechnology Advances, 2009, 27(2): 195-226.
|
3 |
YU S, WANG X, PANG H, et al. Boron nitride-based materials for the removal of pollutants from aqueous solutions: a review[J]. Chemical Engineering Journal, 2018, 333: 343-360.
|
4 |
YAN G, VIRARAGHAVAN T. Heavy-metal removal from aqueous solution by fungus Mucorrouxii[J]. Water Research, 2003, 37(18): 4486-4496.
|
5 |
王建龙, 陈灿. 生物吸附法去除重金属离子的研究进展[J]. 环境科学学报, 2010, 30(4): 673-701.
|
|
WANG J L, CHEN C. Research advances in heavy metal removal by biosorption[J]. Acta Scientiae Circumstantiae, 2010, 30(4): 673-701.
|
6 |
蔡佳亮, 黄艺, 郑维爽. 生物吸附剂对废水重金属污染物的吸附过程和影响因子研究进展[J]. 农业环境科学学报, 2008, 27(4): 1297-1305.
|
|
CAI J L, HUANG Y, ZHENG W S. Research development of biosorption process and impact factors on biosorbent for the treatment of wastewater containing heavy metals[J]. Journal of Agro-Environment Science, 2008, 27(4): 1297-1305.
|
7 |
GAI L H, WANG S G, GONG W X, et al. Influence of pH and ionic strength on Cu(Ⅱ) biosorption by aerobic granular sludge and biosorption mechanism[J]. Journal of Chemical Technology and Biotechnology: International Research in Process, Environmental and Clean Technology, 2008, 83(6): 806-813.
|
8 |
WINKLER M K H, MEUNIER C, HENRIET O, et al. An integrative review of granular sludge for the biological removal of nutrients and recalcitrant organic matter from wastewater[J]. Chemical Engineering Journal, 2018, 336: 489-502.
|
9 |
SHOW K Y, LEE D J, TAY J H. Aerobic granulation: advances and challenges[J]. Applied Biochemistry and Biotechnology, 2012, 167(6): 1622-1640.
|
10 |
SARVAJITH M, REDDY G K K, NANCHARAIAH Y V. Textile dye biodecolourization and ammonium removal over nitrite in aerobic granular sludge sequencing batch reactors[J]. Journal of Hazardous Materials, 2018, 342: 536-543.
|
11 |
NANCHARAIAH Y V, REDDY G K K, MOHAN T V K, et al. Biodegradation of tributyl phosphate, an organosphatetriester, by aerobic granular biofilms[J]. Journal of Hazardous Materials, 2015, 283: 705-711.
|
12 |
RAMOS C, SUÁREZ-OJEDA M E, CARRERA J. Long-term impact of salinity on the performance and microbial population of an aerobic granular reactor treating a high-strength aromatic wastewater[J]. Bioresource Technology, 2015, 198: 844-851.
|
13 |
JIAN M, TANG C, LIU M. Adsorptive removal of Cu2+ from aqueous solution using aerobic granular sludge[J]. Desalination and Water Treatment, 2015, 54(7): 2005-2014.
|
14 |
孙鑫, 李金城, 郑华燕, 等. 好氧颗粒污泥吸附Cu2+的研究[J]. 环境科学与技术, 2011, 34(9): 22-25.
|
|
SUN X, LI J C, ZHENG H Y, et al. Cu2+ biosorption with aerobic granules[J]. Environmental Science and Technology, 2011, 34(9): 22- 25.
|
15 |
SUN X F, LIU C, MA Y, et al. Enhanced Cu(Ⅱ) and Cr(Ⅵ) biosorption capacity on poly(ethylenimine) grafted aerobic granular sludge[J]. Colloids and Surfaces B: Biointerfaces, 2011, 82(2): 456-462.
|
16 |
WANG X H, SONG R H, TENG S X, et al. Characteristics and mechanisms of Cu(Ⅱ) biosorption by disintegrated aerobic granules[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 431-437.
|
17 |
NI B J, FANG F, XIE W M, et al. Growth, maintenance and product formation of autotrophs in activated sludge: taking the nitrite-oxidizing bacteria as an example[J]. Water Research, 2008, 42(16): 4261-4270.
|
18 |
ZHANG B C, LONG B, CHENG Y Y, et al. Rapid domestication of autotrophic nitrifying granular sludge and its stability during long-term operation[J]. Environmental Technology. DOI.org/10.1080/09593330. 2019.1707881.
|
19 |
宣鑫鹏, 张立楠, 赵珏, 等. 膨胀颗粒污泥的恢复及其基质降解动力学[J]. 化工进展, 2018, 37(8): 3245-3251.
|
|
XUAN X P, ZHANG L N, ZHAO J, et al. Remediation of filamentous bulking granule and its substrate degradation kinetics[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3245-3251.
|
20 |
江孟, 胡学伟, 李静园, 等. 好氧颗粒污泥对 Pb2+, Cu2+, Cd2+的吸附[J]. 水处理技术, 2013, 39(2): 53-56.
|
|
JIANG Meng, HU Xuewei, LI Jingyuan, et al. Adsorption of Pb2+, Cu2+, Cd2+ by aerobic granular sludge and the influencing factors[J]. Technology of Water Treatment, 2013, 39(2): 53-56.
|
21 |
YANG C, WANG J, LEI M, et al. Biosorption of zinc(II) from aqueous solution by dried activated sludge[J]. Journal of Environmental Sciences, 2010, 22(5): 675-680.
|
22 |
ZYKOVA I V, PANOV V P, MAKASHOVA T G, et al. Fundamental aspects of heavy metal absorption by activated-sludge microorganisms[J]. Russian Journal of Applied Chemistry, 2002, 75(10): 1650-1652.
|
23 |
唐虹, 康得军, 谢丹瑜. 活性污泥吸附重金属离子的影响因素[J]. 工业用水与废水, 2015, 46(6): 1-5.
|
|
TANG H, KANG D J, XIE D Y. Influencing factors of heavy metal ions adsorption by activated sludge[J]. Industrial Water and Wastewater, 2015, 46(6): 1-5.
|
24 |
YAN L, HU H, ZHANG S, et al. Arsenic tolerance and bioleaching from realgar based on response surface methodology by Acidithiobacillusferrooxidans isolated from Wudalianchi volcanic lake, northeast China[J]. Electronic Journal of Biotechnology, 2017, 25: 50-57.
|
25 |
MALAKOOTIAN M, MANSOORIAN H J, YARI A R. Removal of reactive dyes from aqueous solutions by a non-conventional and low cost agricultural waste: adsorption on ash of Aloe Vera plant[J]. Iranian Journal of Health, Safety and Environment, 2014, 1(3): 117-125.
|
26 |
李志华, 张婷, 吴杰, 等. 异养菌与自养菌对好氧颗粒污泥稳定性的影响[J]. 土木建筑与环境工程, 2010, 32(5): 76-81.
|
|
LI Z H, LI T, WU J, et al. Effects of heterotrophic and autotrophic bacteria on the stability of aerobic granular sludge[J]. Journal of Civil, Architectural and Environmental Engineering, 2010, 32(5): 76-81.
|
27 |
HUANG L, LI M, SI G, et al. Assessment of microbial products in the biosorption process of Cu(Ⅱ) onto aerobic granular sludge: Extracellular polymeric substances contribution and soluble microbial products release[J]. Journal of Colloid and Interface Science, 2018, 527: 87-94.
|
28 |
LOAEC M, OLIER R, GUEZENNEC J. Uptake of lead, cadmiumand zinc by a novel bacterial exopolysaccharide[J]. Water Research, 1997, 31: 1171-1179.
|
29 |
WANG J L, CHEN C. Biosorption of heavy metals by Saccharomyces cerevisiae: a review[J]. Biotechnology Advances, 2006, 24: 427- 451.
|
30 |
DAVIS C W, DI TORO D M. Modeling nonlinear adsorption to carbon with a single chemical parameter: a lognormal Langmuir isotherm[J]. Environmental Science and Technology, 2015, 49(13): 7810-7817.
|
31 |
梁龄予, 王耀晶, 闫颖, 等. 玉米芯吸附水中Cr(Ⅵ)的特性及SEM-EDS表征分析[J]. 生态环境学报, 2015, 24(2): 305-309.
|
|
LIANG L Y, WANG Y J, YAN Y, et al. Adsorption property of Cr(Ⅵ) from aqueous solution by corncob and the SEM-EDS analysis on its characters[J]. Ecology and Environmental Sciences, 2015, 24(2): 305-309.
|
32 |
康铸慧, 王磊, 郑广宏, 等. 恶臭假单胞菌Pseudomonas putida 5-x细胞壁膜系统的Cu2+吸附性能[J]. 环境科学, 2006, 27(5): 965-971
|
|
KANG Z H, WANG L, ZHENG G H, et al. Capability of Cu2+ adsorption on cell surface of Pseudomonas putida 5-x[J]. Environmental Science, 2006, 27(5): 965-971
|
33 |
VIJVER M G, GESTEL C A M VAN, LANNO R P, et al. Internal metal sequestration and its ecotoxicological relevance: a review[J]. Environmental Science and Technology, 2004, 38: 4705-4712.
|