1 |
ZHANG W X. Nanoscale iron particles for environmental remediation: an overview[J]. Journal of Nanoparticle Research, 2003, 5(3/4): 323-332.
|
2 |
DONG H, LO I M C. Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron[J]. Water Research, 2013, 47(1): 419-427.
|
3 |
DONG H, LO I M C. Influence of calcium ions on the colloidal stability of surface-modified nano zero-valent iron in the absence or presence of humic acid[J]. Water Research, 2013, 47(7): 2489-2496.
|
4 |
DONG H, LO I M C. Transport of surface-modified nano zero-valent iron (SM-NZVI) in saturated porous media: effects of surface stabilizer type, subsurface geochemistry, and contaminant loading[J]. Water, Air, & Soil Pollution, 2014, 225(9): 2107.
|
5 |
BUSCH J, MEIBNER T, POTTHOFF A, et al. Investigations on mobility of carbon colloid supported nanoscale zero-valent iron (nZVI) in a column experiment[J]. Environmental Science & Technology, 2014, 21(18): 10908-10916.
|
6 |
PHENRAT T, KIM H J, FAGERLUND F, et al. Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand[J]. Journal of Contaminant Hydrology, 2010, 118(3/4): 152-164.
|
7 |
JOHNSON R L, NURMI J T, JOHNSON O’BRIEN, et al. Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron[J]. Environmental Science & Technology, 2013, 47(3): 130123160802001.
|
8 |
KUSTOV L M, FINASHINA E D, SHUVALOVA E V, et al. Pd-Fe nanoparticles stabilized by chitosan derivatives for perchloroethene dechlorination[J]. Environment International, 2011, 37(6): 104-1052.
|
9 |
JIEMVARANGKUL P, ZHANG W X, LIEN H L. Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media[J]. Chemical Engineering Journal, 2011, 170(2/3): 482-491.
|
10 |
李凯旋, 张永祥, 兰双双, 等. 羧甲基淀粉钠改性零价纳米铁在饱和多孔介质中的迁移[J]. 应用化工, 2017, 46(5): 820-824.
|
|
LI Kaixuan, ZHANG Yongxiang, LAN Shuangshuang, et al. Transport of CMS-Na modified zero-valent iron particles in saturated porous media[J]. Applied Chemical Industry, 2017, 46(5): 820-824.
|
11 |
PHENRAT T, SALEH N, SIRK K, et al. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions[J]. Environmental Science & Technology, 2007, 41(1): 284-290.
|
12 |
KIM H J, PHENRAT T, TILTON R D, et al. Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media[J]. Journal of Colloid & Interface Science, 2012, 370(1): 1-10.
|
13 |
DONG H, AHMAD K, ZENG G, et al. Influence of fulvic acid on the colloidal stability and reactivity of nanoscale zero-valent iron[J]. Environmental Pollution, 2016, 211: 363-369.
|
14 |
BUSCH J, MEIβNER T, POTTHOFF A, et al. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media[J]. Journal of Contaminant Hydrology, 2014, 164: 25-34.
|
15 |
袁瑞强, 郭威, 王鹏, 等. 高pH环境对胶体在饱和多孔介质中迁移的影响[J]. 中国环境科学, 2017, 37(9): 3392-3398.
|
|
YUAN Ruiqiang, GUO Wei, WANG Peng, et al. Impacts of high pH on transport of colloid in saturated porous media.[J]. China Environmental Science, 2017, 37(9): 3392-3398.
|
16 |
罗小廷, 吴丹, 梁嘉良, 等. 典型阴离子对纳米二氧化钛在载铁石英砂多孔介质中迁移行为的影响[J]. 北京大学学报(自然科学版), 2017, 53(4): 749-757.
|
|
LUO Xiaoting, WU Dan, LIANG Jialiang, et al. Influence of typical anions on the transport of titanium dioxide nanoparticles in iron oxide-coated porous media[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(4): 749-757.
|
17 |
SEETHA N, RAOOF A, MOHAN KUMAR M S, et al. Upscaling of nanoparticle transport in porous media under unfavorable conditions: pore scale to Darcy scale[J]. Journal of Contaminant Hydrology, 2017, 200: 1-14.
|
18 |
TUFENKJI N, ELIMELECH M. Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media[J]. Environmental Science & Technology, 2004, 38(2): 529-536.
|
19 |
YIN K, LO I M C, DONG H, et al. Lab-scale simulation of the fate and transport of nano zero-valent iron in subsurface environments: Aggregation, sedimentation, and contaminant desorption[J]. Journal of Hazardous Materials, 2012, 227/228: 118-125.
|
20 |
HOOGENDAM C W, DE KEIZER A, COHEN STUART M A, et al. Adsorption mechanisms of carboxymethyl cellulose on mineral surfaces[J]. Langmuir, 1998, 14(14): 3825-3839.
|
21 |
JIEMVARANGKUL P, ZHANG W X, LIEN H L. Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media[J]. Chemical Engineering Journal, 2011, 170(2/3): 482-491.
|
22 |
SONG L, JOHNSON P R, ELIMELECH M. Kinetics of colloid deposition onto heterogeneously charged surfaces in porous media[J]. Environmental Science & Technology, 1994, 28(6): 1164-1171.
|
23 |
CHEN J Y, KO C H, BHATTACHARJEE S, et al. Role of spatial distribution of porous medium surface charge heterogeneity in colloid transport[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2001, 191(1): 3-15.
|
24 |
ELIMELECH M, NAGAI M, KO C H, et al. Relative insignificance of mineral grain zeta potential to colloid transport in geochemically heterogeneous porous media[J]. Environmental Science & Technology, 2000, 34(11): 2143-2148.
|
25 |
韩建江, 李常锁, 温春宇, 等. 乳化纳米铁浆液在含水层中的迁移特征研究[J]. 中国环境科学, 2018, 38(6): 2175-2181.
|
|
HAN Changjiang, LI Changsuo, WEN Chunyu, et al. Transport characteristics of emulsified nanoscale-zero-valent-iron in saturated porous media[J]. China Environmental Science, 2018, 38(6): 2175-2181.
|