化工进展 ›› 2019, Vol. 38 ›› Issue (07): 3153-3162.DOI: 10.16085/j.issn.1000-6613.2018-1765
收稿日期:
2018-09-03
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
郑育英
作者简介:
张健(1992—),男,硕士研究生,研究方向为燃料电池电催化剂。E-mail:<email>1456487841@qq.com</email>。
基金资助:
Jian ZHANG(),Dai DANG,Wenjin JI,Quanbing LIU,Yanxiong FANG,Yuying ZHENG()
Received:
2018-09-03
Online:
2019-07-05
Published:
2019-07-05
Contact:
Yuying ZHENG
摘要:
商业铂碳催化剂价格高昂,开发非铂材料是推进燃料电池商业化的关键一步。本文首先介绍了燃料电池氧还原反应电催化剂的研究背景,接着分别介绍了非贵金属、非金属以及复合材料的催化剂,并对各类催化剂的活性位点和催化机理进行了简要的评述。其中,过渡金属的氮碳化物成本低廉,具有较高的催化活性以及优异的稳定性,是最有望替代贵金属Pt的一类催化剂。杂原子的掺杂能够改变碳材料的表面电荷分布,提升碳材料的催化活性。将过渡金属的氮碳化物和特殊结构的碳材料有效结合,可以设计出具有双功能的复合材料。最后,针对非铂催化剂存在的问题进行了分析并提出了今后工作的几个方向,为今后非铂电催化剂的研究提供参考。高活性高稳定性的非铂催化剂是未来该领域的重点研究方向。
中图分类号:
张健, 党岱, 姬文晋, 刘全兵, 方岩雄, 郑育英. 非铂燃料电池电催化剂研究进展[J]. 化工进展, 2019, 38(07): 3153-3162.
Jian ZHANG, Dai DANG, Wenjin JI, Quanbing LIU, Yanxiong FANG, Yuying ZHENG. Research progress in non-platinum fuel cells electrocatalysts[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3153-3162.
1 | YANG S B , FENG X L , WANG X C , et al . Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Angew. Chem.: Int. Ed., 2011, 50(23): 5339-5343. |
2 | GONG K P , DU F , XIA Z H , et al . Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764. |
3 | LEFEVRE M , PROIETTI E , JAOUEN F , et al . Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science, 2009, 324(5923): 71-74. |
4 | QIAO X C , PENG H L , YOU C H , et al . Nitrogen, phosphorus and iron doped carbon nanospheres with high surface area and hierarchical porous structure for oxygen reduction[J]. Journal of Power Sources, 2015, 288: 253-260. |
5 | SUN M , LIU H J , LIU Y , et al . Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction[J]. Nanoscale, 2015, 7(4): 1250-1269. |
6 | SUN M , ZHANG G , LIU H , et al . α- and γ-Fe2O3 nanoparticle/nitrogen doped carbon nanotube catalysts for high-performance oxygen reduction reaction[J]. Science China Materials, 2015, 58(9): 683-692. |
7 | ABROSHAN H , BOTHRA P , BACK S , et al . Ultrathin cobalt oxide overlayer promotes catalytic activity of cobalt nitride for the oxygen reduction reaction[J]. The Journal of Physical Chemistry C, 2018, 122(9): 4783-4791. |
8 | ALEXANDER A M , HARGREAVES J S J . Alternative catalytic materials: carbides, nitrides, phosphides and amorphous boron alloys[J]. Chemical Society Reviews, 2010, 39(11): 4388-4401. |
9 | XIE J F , XIE Y . Transition metal nitrides for electrocatalytic energy conversion: opportunities and challenges[J]. Chemistry, 2016, 22(11): 3588-3598. |
10 | DONG Y Y , DENG, Y J, ZENG J H , et al . A high-performance composite ORR catalyst based on the synergy between binary transition metal nitride and nitrogen-doped reduced graphene oxide[J]. Journal of Materials Chemistry A, 2017, 5(12): 5829-5837. |
11 | TANG H B , LUO J M , TIAN X L , et al . Template-free preparation of 3D porous co-doped VN nanosheet-assembled microflowers with enhanced oxygen reduction activity[J]. ACS Applied Materials & Interfaces, 2018, 10(14): 11604-11612. |
12 | SUN T , WU Q , CHE R C , et al . Alloyed Co-Mo nitride as high-performance electrocatalyst for oxygen reduction in acidic medium[J]. ACS Catalysis, 2015, 5(3): 1857-1862. |
13 | YU J M , GAO X P , CHEN G Z , et al . Electrocatalytic performance of commercial vanadium carbide for oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2016, 41(7): 4150-4158. |
14 | YANG W X , LIU X J , YUE X Y , et al . Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction[J]. J. Am. Chem. Soc., 2015, 137(4): 1436-1439. |
15 | FAN X J , PENG Z W , YE R Q , et al . M3C (M: Fe, Co, Ni) nanocrystals encased in graphene nanoribbons: an active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions[J]. ACS Nano, 2015, 9(7): 7407-7418. |
16 | XIAO M L , ZHU J B , FENG L G , et al . Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions[J]. Adv. Mater., 2015, 27(15): 2521-2527. |
17 | REN G Y , LU X Y , LI Y N , et al . Porous core-shell Fe3C embedded n-doped carbon nanofibers as an effective electrocatalysts for oxygen reduction reaction[J]. ACS Appl. Mater. Interfaces, 2016, 8(6): 4118-4125. |
18 | SUN M , DAVENPORT D , LIU H J , et al . Highly efficient and sustainable non-precious-metal Fe-N-C electrocatalysts for the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2018, 6(6): 2527-2539. |
19 | KIM J H, SA Y J, JEONG H Y , et al . Roles of Fe-N x and Fe-Fe3C@c species in Fe-N/C electrocatalysts for oxygen reduction reaction[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 9567-9575. |
20 | KWAK D H , HAN S B , LEE Y W, et al . Fe/N/S-doped mesoporous carbon nanostructures as electrocatalysts for oxygen reduction reaction in acid medium[J]. Applied Catalysis B: Environmental, 2017, 203: 889-898. |
21 | JIANG W J , GU L , LI L , et al . Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-N(x)[J]. J. Am. Chem. Soc., 2016, 138(10): 3570-3587. |
22 | LEE S, KWAK D H , HAN S B , et al . Bimodal porous iron/nitrogen-doped highly crystalline carbon nanostructure as a cathode catalyst for the oxygen reduction reaction in an acid medium[J]. ACS Catalysis, 2016, 6(8): 5095-5102. |
23 | YANG J , ZHANG F J , LU H Y , et al . Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene[J]. Angew. Chem.: Int. Ed., 2015, 54(37): 10889-10893. |
24 | YIN P Q , YAO T , WU Y , et al . Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angew. Chem.: Int. Ed., 2016, 55(36): 10800-10805. |
25 | KUANG M , WANG Q , HAN P , et al . Cu, Co-embedded N-enriched mesoporous carbon for efficient oxygen reduction and hydrogen evolution reactions[J]. Advanced Energy Materials, 2017, 7(17): 1700193. |
26 | LI Z T , SUN H D , WEI L Q , et al . Lamellar metal organic framework-derived Fe-N-C non-noble electrocatalysts with bimodal porosity for efficient oxygen reduction[J]. ACS Applied Materials & Interfaces, 2017, 9(6): 5272-5278. |
27 | TANG C , ZHANG Q . Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects[J]. Adv. Mater., 2017, 29(13): 1604103. |
28 | YANG S B , ZHI L J , TANG K , et al . Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions[J]. Advanced Functional Materials, 2012, 22(17): 3634-3640. |
29 | DAI L M , XUE Y H , QU L T , et al . Metal-free catalysts for oxygen reduction reaction[J]. Chem. Rev., 2015, 115(11): 4823-4892. |
30 | LIU Z W , PENG F , WANG H J , et al . Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium[J]. Angew. Chem.: Int. Ed., 2011, 50(14): 3257-3261. |
31 | SHAO Y Y , ZHANG S , ENGELHARD M H , et al . Nitrogen-doped graphene and its electrochemical applications[J]. Journal of Materials Chemistry, 2010, 20(35): 7491. |
32 | YANG D S , BHATTACHARJYA D , INAMDAR S , et al . Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. J. Am Chem. Soc., 2012, 134(39): 16127-16130. |
33 | DAEMS N , SHENG X , VANKELECOM I F J , et al . Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2014, 2(12): 4085-4110. |
34 | WANG D W , SU D S . Heterogeneous nanocarbon materials for oxygen reduction reaction[J]. Energy & Environmental Science, 2014, 7(2): 576-591. |
35 | ZHANG J T , ZHAO Z H , XIA Z H , et al . A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nature Nanotechnology, 2015, 10(5): 444-452. |
36 | JEON I Y , ZHANG S , ZHANG L P , et al . Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect[J]. Advanced Materials, 2013, 25(42): 6138-6145. |
37 | LAI L F , POTTS J R , ZHAN D , et al . Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction[J]. Energy & Environmental Science, 2012, 5(7): 7936. |
38 | GUO D H , SHIBUYA R , AKIBA C , et al . Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271): 361-365. |
39 | YU H J , SHANG L , BIAN T , et al . Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction[J]. Adv. Mater., 2016, 28(25): 5080-5086. |
40 | YANG Z , YAO Z , LI G F , et al . Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano, 2012, 6(1): 205-211. |
41 | QIAO X C , LIAO S J , YOU C H , et al . Phosphorus and nitrogen dual doped and simultaneously reduced graphene oxide with high surface area as efficient metal-free electrocatalyst for oxygen reduction[J]. Catalysts, 2015, 5(2): 981-991. |
42 | MA T Y, RAN J R , DAI S , et al . Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: flexible and reversible oxygen electrodes[J]. Angew. Chem.: Int. Ed., 2015, 54(15): 4646-4650. |
43 | LI R , WEI Z D , GOU X L . Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution[J]. ACS Catalysis, 2015, 5(7): 4133-4142. |
44 | BORGHEI M , LAOCHAROEN N , KIBENA-PÕLDSEPP E , et al . Porous N,P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: alternative to Pt-C for alkaline fuel cells[J]. Applied Catalysis B: Environmental, 2017, 204: 394-402. |
45 | LI J J , ZHANG Y M , ZHANG X H , et al . S, N dual-doped graphene-like carbon nanosheets as efficient oxygen reduction reaction electrocatalysts[J]. ACS Appl. Mater. Interfaces, 2017, 9(1): 398-405. |
46 | DONG D , LIU Y , LI J H . Co3O4 hollow polyhedrons as bifunctional electrocatalysts for reduction and evolution reactions of oxygen[J]. Particle & Particle Systems Characterization, 2016, 33(12): 887-895. |
47 | WU C , LIU D , LI H , et al . Molybdenum carbide-decorated metallic cobalt@nitrogen-doped carbon polyhedrons for enhanced electrocatalytic hydrogen evolution[J]. Small, 2018, 14(16): e1704227. |
48 | SUN M , LIU H J , QU J H , et al . Earth-rich transition metal phosphide for energy conversion and storage[J]. Advanced Energy Materials, 2016, 6(13): 1600087. |
49 | LIU M J , LI J H . Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen[J]. ACS Applied Materials & Interfaces, 2016, 8(3): 2158-2165. |
50 | LI S P , ZHANG G , TU X M , et al . Polycrystalline CoP/CoP2 structures for efficient full water splitting[J]. ChemElectroChem, 2018, 5(4): 701-707. |
51 | ZHANG G , LI J . Tailoring oxygen vacancy on Co3O4 nanosheets with high surface area for oxygen evolution reaction[J]. Chinese Journal of Chemical Physics, 2018, 31(4): 517-522. |
52 | ZHANG G , WANG G C , LIU H J , et al . Rapidly catalysis of oxygen evolution through sequential engineering of vertically layered FeNi structure[J]. Nano Energy, 2018, 43: 359-367. |
53 | AIJAZ A , MASA J , ROSLER C , et al . Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode[J]. Angew. Chem.: Int. Ed., 2016, 55(12): 4087-4091. |
54 | WU C , ZHANG Y H , DONG D , et al . Co9S8 nanoparticles anchored on nitrogen and sulfur dual-doped carbon nanosheets as highly efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions[J]. Nanoscale, 2017, 9(34): 12432-12440. |
55 | HU B C , WU Z Y , CHU S Q , et al . SiO2-protected shell mediated templating synthesis of Fe-N-doped carbon nanofibers and their enhanced oxygen reduction reaction performance[J]. Energy & Environmental Science, 2018, 11(8): 2208-2215. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[8] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[9] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[10] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[11] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[12] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[13] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[14] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[15] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |