化工进展 ›› 2018, Vol. 37 ›› Issue (07): 2780-2789.DOI: 10.16085/j.issn.1000-6613.2017-1696
宋鑫1,2, 张双虹2,3,4, 陈涛2,3,4, 刘训理1, 王智文2,3,4
收稿日期:
2017-08-11
修回日期:
2017-09-03
出版日期:
2018-07-05
发布日期:
2018-07-05
通讯作者:
刘训理,教授,研究方向为微生物资源与应用;王智文,副教授,研究方向为微生物代谢工程与合成生物学。
作者简介:
宋鑫(1991-),女,硕士研究生。
基金资助:
SONG Xin1,2, ZHANG Shuanghong2,3,4, CHEN Tao2,3,4, LIU Xunli1, WANG Zhiwen2,3,4
Received:
2017-08-11
Revised:
2017-09-03
Online:
2018-07-05
Published:
2018-07-05
摘要: 大肠杆菌具有金字塔式的基因表达等级调控网络,调控因子的自动调控、共调控和交叉调控,构成了复杂而又精细的转录调控网络。微生物通过扰动和优化这个高效的调控网络快速地响应环境变化,而适应新的耐受条件。微生物的耐受性是由多基因控制的复杂表型,通过大肠杆菌调控因子工程,可以大尺度重构调控网络,显著改进菌株耐受性,成为了近几年的研究热点。本文总结了大肠杆菌调控因子及其工程方法,综述了通过大肠杆菌调控因子工程重构代谢网络来提高菌株耐受性的最新研究进展,展望了通过大肠杆菌调控因子工程提高菌株鲁棒性的发展方向。
中图分类号:
宋鑫, 张双虹, 陈涛, 刘训理, 王智文. 大肠杆菌调控因子工程及其菌株耐受性研究进展[J]. 化工进展, 2018, 37(07): 2780-2789.
SONG Xin, ZHANG Shuanghong, CHEN Tao, LIU Xunli, WANG Zhiwen. Research progress of regulator engineering and stress tolerances with Escherichia coli[J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2780-2789.
[1] JULLESSON D, DAVID F, PFLEGER B, et al. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals[J]. Biotechnol. Adv., 2015, 33(7):1395-1402. [2] LEE S Y, KIM H U. Systems strategies for developing industrial microbial strains[J]. Nat. Biotechnol., 2015, 33(10):1061-1072. [3] LIN Z, ZHANG Y, WANG J. Engineering of transcriptional regulators enhances microbial stress tolerance[J]. Biotechnology Advances, 2013, 31(6):986-991. [4] MUKHOPADHYAY A. Tolerance engineering in bacteria for the production of advanced biofuels and chemicals[J]. Trends Microbiol., 2015, 23(8):498-508. [5] MARTIEN J I, AMADOR-NOGUEZ D. Recent applications of metabolomics to advance microbial biofuel production[J]. Curr. Opin. Biotechnol., 2017, 43(2):118-126. [6] PEABODY G L, WINKLER J, KAO K C. Tools for developing tolerance to toxic chemicals in microbial systems and perspectives on moving the field forward and into the industrial setting[J]. Current Opinion in Chemical Engineering, 2014, 6:9-17. [7] RAU M H, CALERO P, LENNEN R M, et al. Genome-wide Escherichia coli stress response and improved tolerance towards industrially relevant chemicals[J]. Microbial Cell Factories, 2016, 15(1):176. [8] ISALAN M, LEMERLE C, MICHALODIMITRAKIS K, et al. Evolvability and hierarchy in rewired bacterial gene networks[J]. Nature, 2008, 452(7189):840-845. [9] YU H, GERSTEIN M. Genomic analysis of the hierarchical structure of regulatory networks[J]. Proc. Natl. Acad. Sci. U S A, 2006, 103(40):14724-14731. [10] CONRAD T M, LEWIS N E, PALSSON B O. Microbial laboratory evolution in the era of genome-scale science[J]. Molecular Systems Biology, 2011, 7:509. [11] ALPER H, MOXLEY J, NEVOIGT E, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production[J]. Science, 2006, 314(5805):1565-1568. [12] ALPER H, STEPHANOPOULOS G. Global transcription machinery engineering:a new approach for improving cellular phenotype[J]. Metabolic Engineering, 2007, 9(3):258-267. [13] GARST A D, BASSALO M C, PINES G, et al. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering[J]. Nature Biotechnology, 2017, 35(1):48-55. [14] ALPER H. Development of systematic and combinatorial approaches for the metabolic engineering of microorganisms[D]. Philadelphia:Massachusetts Institute of Technology, 2006. [15] GENG H, JIANG R. cAMP receptor protein (CRP) -mediated resistance/tolerance in bacteria:mechanism and utilization in biotechnology[J]. Appl. Microbiol. Biotechnol., 2015, 99(11):4533-4543. [16] RAVCHEEV D A, BEST A A, SERNOVA N V, et al. Genomic reconstruction of transcriptional regulatory networks in lactic acid bacteria[J]. BMC Genomics, 2013, 14(1):1-14. [17] GRAINGER D C, HURD D, HARRISON M, et al. Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome[J]. Proc. Proc. Natl. Acad Sci. USA, 2005, 102(49):17693-17698. [18] MA H W, KUMAR B, DITGES U, et al. An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs[J]. Nucleic Acids Research, 2004, 32(22):6643-6649. [19] BUSBY S, EBRIGHT R H. Transcription activation by catabolite activator protein (CAP)[J]. J. Mol. Biol., 1999, 293(2):199-213. [20] BASAK S, GENG H, JIANG R. Rewiring global regulator cAMP receptor protein (CRP) to improve E. coli tolerance towards low pH[J]. Journal of Biotechnology, 2014, 173(1):68-75. [21] CHONG H, GENG H, ZHANG H, et al. Enhancing E. coli isobutanol tolerance through engineering its global transcription factor cAMP receptor protein (CRP)[J]. Biotechnology and Bioengineering, 2014, 111(4):700-708. [22] CHONG H, HUANG L, YEOW J, et al. Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP)[J]. PLoS One, 2013, 8(2):e57628. [23] WON H S, SEO M D, KO H S, et al. Interdomain interaction of cyclic AMP receptor protein in the absence of cyclic AMP[J]. Journal of Biochemistry, 2008, 143(2):163-167. [24] ZHANG H, CHONG H, CHING C B, et al. Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance[J]. Applied Microbiology and Biotechnology, 2012, 94(4):1107-1117. [25] HARMAN J G. Allosteric regulation of the cAMP receptor protein[J]. Biochim. Biophys. Acta, 2001, 1547(1):1-17. [26] PASSNER J M, SCHULTZ S C, STEITZ T A. Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2. 1 A resolution[J]. J. Mol. Biol., 2000, 304(5):847-859. [27] YU S, LEE J C. Role of residue 138 in the interdomain hinge region in transmitting allosteric signals for DNA binding in Escherichia coli cAMP receptor protein[J]. Biochemistry, 2004, 43(16):4662-4669. [28] CHONG H, YEOW J, WANG I, et al. Improving acetate tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP)[J]. PLoS One, 2013, 8(10):e77422. [29] ZHANG H, CHONG H, CHING C B, et al. Random mutagenesis of global transcription factor cAMP receptor protein for improved osmotolerance[J]. Biotechnol. Bioeng., 2012, 109(5):1165. [30] ZHANG H, CHONG H, CHI B C, et al. Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance[J]. Appl. Microbiol. Biotechnol., 2012, 94(4):1107-1117. [31] BASAK S, JIANG R. Enhancing E. coli Tolerance towards oxidative stress via engineering its global regulator cAMP receptor protein (CRP)[J]. PLoS One, 2012, 7(12):e51179. [32] ZHANG H, CHONG H, CHING C B, et al. Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance[J]. Appl. Microbiol. Biotechnol., 2012, 94(4):1107-1117. [33] BASAK S, SONG H, JIANG R. Error-prone PCR of global transcription factor cyclic AMP receptor protein for enhanced organic solvent(toluene) tolerance[J]. Process Biochem., 2012, 47(12):2152-2158. [34] BASAK S, GENG H, JIANG R. Rewiring global regulator cAMP receptor protein (CRP)to improve E. coli tolerance towards low pH[J]. J. Biotechnol., 2014, 173(1):68-75. [35] MORENOVIVI N C, CABELLO P, MART NEZLUQUE M, et al. Prokaryotic nitrate reduction:molecular properties and functional distinction among bacterial nitrate reductases[J]. J. Bacteriol., 1999, 181(21):6573-6584. [36] PARKINSON G, WILSON C, GUNASEKERA A, et al. Structure of the CAP-DNA complex at 2.5 angstroms resolution:a complete picture of the protein-DNA interface[J]. J. Mol. Biol., 1996, 260(3):395-408. [37] UPPAL S, JAWALI N. The cyclic AMP receptor protein (CRP) regulates mqsRA, coding for the bacterial toxin-antitoxin gene pair, in Escherichia coli[J]. Research in Microbiology, 2016, 167(1):58-62. [38] NISHINO K, SENDA Y, YAMAGUCHI A. CRP regulator modulates multidrug resistance of Escherichia coli by repressing the mdtEF multidrug efflux genes[J]. The Journal of Antibiotics, 2008, 61(3):120-127. [39] 高茜,朱丽英,周伟,等. RAISE技术改组转录因子RpoD调控大肠杆菌的低pH值耐受性[J]. 化学与生物工程,2016,33(3):14-18. GAO Xi, ZHU Liying, ZHOU Wei, et al. Tailoring of transcription factor RpoD by RAISE to regulate low pH value tolerance of Escherichia coli[J]. Chemistry & Bioengineering, 2016, 33(3):14-18. [40] ISHIHAMA A, SHIMADA T, YAMAZAKI Y. Transcription profile of Escherichia coli:genomic SELEX search for regulatory targets of transcription factors[J]. Nucleic Acids Research, 2016, 44(5):2058-2074. [41] ZHANG F, QIAN X, SI H, et al. Significantly improved solvent tolerance of Escherichia coli by global transcription machinery engineering[J]. Microbial Cell Factories, 2015, 14(1):175. [42] GAO X, JIANG L, ZHU L, et al. Tailoring of global transcription sigma D factor by random mutagenesis to improve Escherichia coli tolerance towards low-pH[J]. J. Biotechnol., 2016, 224:55-63. [43] COLEMAN C, BAKER C, NICKERSON C A. The role of sigma factors in regulating bacterial stress responses and pathogenesis[M]. New York:Springer, 2006. [44] TENAILLON O, RODRIGUEZ-VERDUGO A, GAUT R L, et al. The molecular diversity of adaptive convergence[J]. Science, 2012, 335(6067):457-461. [45] CHANG R L, ANDREWS K, KIM D, et al. Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli[J]. Science, 2013, 340(6137):1220-1223. [46] 乐军,蒋晓飞,梁莉,等. 蛋白质组学分析多重耐药的铜绿假单胞菌[J]. 中国抗生素杂志, 2006, 31(8):496-500. YUE Jun, JIANG Xiaofei, LIANG Li, et al.Proteomic analysis of multi-drug resistant pseudomonas aeruginosa[J]. Chinese Journal of Antibiotics, 2006, 31(8):496-500. [47] CHARPENTIER B, BRANLANT C. The Escherichia coli gapA gene is transcribed by the vegetative RNA polymerase holoenzyme E sigma 70 and by the heat shock RNA polymerase E sigma 32[J]. J. Bacteriol., 1994, 176(3):830-839. [48] COOLEY J W, HOWITT C A, VERMAAS W F. Succinate:quinol oxidoreductases in the cyanobacterium synechocystis sp. strain PCC 6803:Presence and function in metabolism and electron transport[J]. J. Bacteriol., 2000, 182(3):714-722. [49] BOWLES L K, ELLEFSON W L. Effects of butanol on clostridium acetobutylicum[J]. Appl. Environ. Microbiol., 1985, 50(5):1165-1170. [50] REYES L H, ALMARIO M P, KAO K C. Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli[J]. PLoS One, 2011, 6(3):e17678. [51] MASUDA N, CHURCH G M. Escherichia coli gene expression responsive to levels of the response regulator EvgA[J]. J. Bacteriol., 2002, 184(22):6225-6234. [52] STAUFFER L T, STAUFFER G V. Multiple roles for the sRNA GcvB in the regulation of slp levels in Escherichia coli[J]. ISRN Bacteriology, 2013, 2013(8):918106. [53] BATTESTI A, MAJDALANI N, GOTTESMAN S. The RpoS-mediated general stress response in Escherichia coli[J]. Annu. Rev. Microbiol., 2011, 65:189-213. [54] NISHINO K, SENDA Y, HAYASHINISHINO M, et al. Role of the AraC|[ndash]|XylS family regulator YdeO in multi-drug resistance of Escherichia coli[J]. J. Antibiot., 2009, 62(5):251-257. [55] HENGGE R. Proteolysis of σ S (RpoS) and the general stress response in Escherichia coli[J]. Res. Microbiol., 2009, 160(9):667-676. [56] GRUBER T M, GROSS C A. Multiple sigma subunits and the partitioning of bacterial transcription space[J]. Annu. Rev. Microbiol., 2003, 57:441-466. [57] CONRAD T M, FRAZIER M, JOYCE A R, et al. RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media[J]. Proceedings of the National Academy of Sciences, 2010, 107(47):20500-20505. [58] SEBASTIEN W, BARRICK J E, OLIVIER T, et al. Mutation rate inferred from synonymous substitutions in a long-term evolution experiment with Escherichia coli[J]. G3:Genes, Genomes, Genetics, 2011, 1(3):183-186. [59] TENAILLON O, RODR GUEZ-VERDUGO A, GAUT R L, et al. The molecular diversity of adaptive convergence[J]. Science, 2012, 335(6067):457-461. [60] BLABY I K, LYONS B J, WROCLAWSKAHUGHES E, et al. Experimental evolution of a facultative thermophile from a mesophilic ancestor[J]. Appl. Environ. Microbiol., 2012, 78(1):144. [61] GAMACASTRO S, SALGADO H, PERALTAGIL M, et al. RegulonDB version 7. 0:transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units(Gensor Units)[J]. Nucleic Acids Res., 2011, 39(Database issue):98-105. [62] DERLINDEN E V, IMPE J F V. Modeling growth rates as a function of temperature:model performance evaluation with focus on the suboptimal temperature range[J]. Int. J. Food Microbiol., 2012, 158(1):73-78. [63] SANTOS C N, STEPHANOPOULOS G. Combinatorial engineering of microbes for optimizing cellular phenotype[J]. Curr. Opin. Chem. Biol., 2008, 12(2):168-176. [64] GRUBER T M, GROSS C A. Multiple sigma subunits and the partitioning of bacterial transcription space[J]. Annu. Rev. Microbiol., 2003, 57:441-466. [65] HAFT R J, KEATING D H, SCHWAEGLER T, et al. Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria[J]. Proc. Natl. Acad Sci. USA, 2014, 111(25):2576-2585. [66] SON Y J, PHUE J N, TRINH L B, et al. The role of Cra in regulating acetate excretion and osmotic tolerance in E. coli K-12 and E. coli B at high density growth[J]. Microbial Cell Factories, 2011, 10(1):1-9. [67] PERRENOUD A, SAUER U. Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli[J]. J. Bacteriol., 2005, 187(9):3171. [68] WERPY T A, HOLLADAY J E, WHITE J F. Top value added chemicals from biomass:Ⅰ. Results of screening for potential candidates from sugars and synthesis gas[R]. US:PNNL and NREL, 2004. [69] ERICKSON B, WINTERS P. Perspective on opportunities in industrial biotechnology in renewable chemicals[J]. Biotechnol. J., 2011, 7(2):176-185. [70] JANG Y S, KIM B, SHIN J H, et al. Bio-based production of C2-C6 platform chemicals[J]. Biotechnol. Bioeng., 2012, 109(10):2437-2459. [71] MASUDA N, CHURCH G M. Escherichia coli gene expression responsive to levels of the response regulator EvgA[J]. J. Bacteriol., 2002, 184(22):6225-6234. [72] CHRIST D, CHIN J W. Engineering Escherichia coli heat-resistance by synthetic gene amplification[J]. Protein Eng. Des. Sel., 2008, 21(2):121-125. [73] TUCKER N P, LE B N, DIXON R, et al. There's NO stopping NsrR, a global regulator of the bacterial NO stress response[J]. Trends in Microbiol., 2010, 18(4):149. [74] JOHNSON J R, CLABOTS C, ROSEN H. Effect of inactivation of the global Oxidative stress regulator OxyR on the colonization ability of Escherichia coli O1:K1:H7 in a mouse model of ascending urinary tract infection[J]. Infection and Immunity, 2006, 74(1):461-468. [75] ZAFAR M A, SANCHEZ-ALBEROLA N, WOLF R E. Genetic evidence for a novel interaction between transcriptional activator SoxS and region 4 of the sigma(70) subunit of RNA polymerase at class Ⅱ SoxS-dependent promoters in Escherichia coli[J]. Journal of Molecular Biology, 2011, 407(3):333-353. [76] TSUKAGOSHI N, AONO R. Entry into and release of solvents by Escherichia coli in an organic-aqueous two-liquid-phase system and substrate specificity of the AcrAB-TolC solvent-extruding pump[J]. J. Bacteriol., 2000, 182(17):4803-4810. [77] RUIZ C, MCMURRY L M, LEVY S B. Role of the multidrug resistance regulator MarA in global regulation of the hdeAB acid resistance operon in Escherichia coli[J]. Journal of Bacteriology, 2008, 190(4):1290-1297. [78] SEO S W, KIM D, SZUBIN R, et al. Genome-wide reconstruction of OxyR and SoxRS transcriptional regulatory networks under oxidative stress in Escherichia coli K-12 MG1655[J]. Cell Reports, 2015, 12(8):1289-1299. [79] CHOI S H, BAUMLER D J, KASPAR C W. Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157:H7[J]. Appl. Environ. Microbiol., 2000, 66(9):3911-3916. [80] SALGADO H, PERALTA-GIL M, GAMA-CASTRO S, et al. RegulonDB v8. 0:Omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold s tandards and more[J]. Nucleic Acids Res., 2013, 41(Database issue):203-213. [81] SANG W S, KIM D, O'BRIEN E J, et al. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli[J]. Nature Communications, 2015, 6:7970. [82] CASTANIE-CORNET M P, CAM K, BASTIAT B, et al. Acid stress response in Escherichia coli:mechanism of regulation of gadA transcription by RcsB and GadE[J]. Nucleic Acids Research, 2010, 38(11):3546-3554. [83] SAYED A K, FOSTER J W. A 750 bp sensory integration region directs global control of the Escherichia coli GadE acid resistance regulator[J]. Molecular Microbiology, 2009, 71(6):1435-1450. [84] OH H Y, LEE J O, KIM O B. Increase of organic solvent tolerance of Escherichia coli by the deletion of two regulator genes, fadR and marR[J]. Appl. Microbiol. Biotechnol., 2012, 96(6):1619-1627. [85] CHEN T, WANG J, YANG R, et al. Laboratory-evolved mutants of an exogenous global regulator, IrrE from Deinococcus radiodurans, enhance stress tolerances of Escherichia coli[J]. PLoS One, 2011, 6(1):e16228. [86] LEE H H, MOLLA M N, CANTOR C R, et al. Bacterial charity work leads to population-wide resistance[J]. Nature, 2010, 467(7311):82. [87] LEE J Y, SUNG B H, YU B J, et al. Phenotypic engineering by reprogramming gene transcription using novel artificial transcription factors in Escherichia coli[J]. Nucleic Acids Res., 2008, 36(16):e102. [88] GAO G, TIAN B, LIU L, et al. Expression of Deinococcus radiodurans PprI enhances the radioresistance of Escherichia coli[J]. DNA Repair, 2003, 2(12):1419-1427. [89] PAN J, WANG J, ZHOU Z, et al. IrrE, a global regulator of extreme radiation resistance in Deinococcus radiodurans, enhances salt tolerance in Escherichia coli and Brassica napus[J]. PLoS One, 2009, 4(2):e4422. [90] MA R, ZHANG Y, HONG H, et al. Improved osmotic tolerance and ethanol production of ethanologenic Escherichia coli by IrrE, a global regulator of radiation-resistance of Deinococcus radiodurans[J]. Current Microbiology, 2011, 62(2):659-664. [91] CHEN T, WANG J, ZENG L, et al. Significant rewiring of the transcriptome and proteome of an Escherichia coli strain harboring a tailored exogenous global regulator IrrE[J]. PLoS One,2012,7(7):e37126. [92] ZHOU Z, WEI Z, MING C, et al. Genome-wide transcriptome and proteome analysis of Escherichia coli expressing IrrE, a global regulator of Deinococcus radiodurans[J]. Mol. BioSyst., 2011, 7(5):1613-1620. [93] WANG J, ZHANG Y, CHEN Y, et al. Global regulator engineering significantly improved Escherichia coli tolerances toward inhibitors of lignocellulosic hydrolysates[J]. Biotechnology and Bioengineering, 2012, 109(12):3133-3142. [94] APPUKUTTAN D, SINGH H, PARK S H, et al. Engineering synthetic multistress tolerance in Escherichia coli by using a deinococcal response regulator, DR1558[J]. Appl. Environ. Microbiol., 2015, 82(4):1154. [95] MINTON K W. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans[J]. Mol. Microbiol., 1994, 13(1):9-15. [96] MATTIMORE V, BATTISTA J R. Radioresistance of Deinococcus radiodurans:functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation[J]. J. Bacteriol., 1996, 178(3):633-637. [97] DALY M J, OUYANG L, FUCHS P, et al. in vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans[J]. J. Bacteriol., 1994, 176(12):3508-3517. |
[1] | 高聪, 陈城虎, 陈修来, 刘立明. 代谢工程改造微生物合成生物基单体的进展与挑战[J]. 化工进展, 2023, 42(8): 4123-4135. |
[2] | 唐文秀, 王学明, 郭亮, 季立豪, 高聪, 陈修来, 刘立明. 代谢工程改造大肠杆菌生产琥珀酸[J]. 化工进展, 2022, 41(2): 938-950. |
[3] | 郭超, 冯奥, 陆信曜, 宗红, 诸葛斌. 重组大肠杆菌1,2,4-丁三醇合成途径的平衡优化[J]. 化工进展, 2022, 41(12): 6531-6539. |
[4] | 胥健萍, 王颖, 李春, 周晓宏. 微生物细胞工厂中代谢途径动态调控策略与网络构建[J]. 化工进展, 2022, 41(12): 6511-6521. |
[5] | 陶雨萱, 张尚杰, 景艺文, 信丰学, 董维亮, 周杰, 蒋羽佳, 章文明, 姜岷. 甲基营养型大肠杆菌构建策略的研究进展[J]. 化工进展, 2021, 40(7): 3932-3941. |
[6] | 李阳, 朱晨辉, 范代娣. 重组胶原蛋白的绿色生物制造及其应用[J]. 化工进展, 2021, 40(3): 1262-1275. |
[7] | 周子康, 许平. 全局转录调控在细胞工厂构建中的应用与进展[J]. 化工进展, 2021, 40(3): 1248-1251. |
[8] | 陈露,刘丁玉,汪保卫,赵玉姣,贾广韬,陈涛,王智文. 大肠杆菌乙酰辅酶A代谢调控及其应用研究进展[J]. 化工进展, 2019, 38(9): 4218-4226. |
[9] | 肖文海, 周嗣杰, 王颖, 元英进. 如何工程化生物学[J]. 化工进展, 2016, 35(06): 1827-1836. |
[10] | 张强,郭元,韩德明. 酿酒酵母乙醇耐受性的研究进展[J]. 化工进展, 2014, 33(01): 187-192. |
[11] | 于化江1,熊 亮2,熊中琼2,张国庆2. 复合电沉积制备TiO2/泡沫镍光催化材料及其催化活性 [J]. 化工进展, 2011, 30(9): 1972-. |
[12] | 靳孝庆,王桂兰,何冰芳. 丙酮丁醇发酵的研究进展及其高产策略 [J]. 化工进展, 2007, 26(12): 1727-. |
[13] | 陈文谋,卢英华,李清彪,程志敬,何 宁 . 固定床反应器培养固定化大肠杆菌生产β-葡聚糖酶 [J]. 化工进展, 2006, 25(12): 1423-. |
[14] | 聂 尧,徐 岩,王海燕,许 娜,肖 荣. 重组大肠杆菌不对称还原2-羟基苯乙酮合成(R)-苯基乙二醇 [J]. 化工进展, 2006, 25(10): 1231-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |