[1] CHEN Y, NIELSEN J. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks[J]. Curr. Opin. Biotechnol., 2013, 24(6):965-972.
[2] GIBSON D G, BENDERS G A, AXELROD K C, et al. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome[J]. Proc. Natl. Acad Sci. USA, 2008, 105(51):20404-20409.
[3] SHAO Z, ZHAO H, ZHAO H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways[J]. Nucleic Acids Res., 2009, 37(2):e16.
[4] NIELSEN J. Synthetic biology for engineering acetyl coenzyme A metabolism in yeast[J]. MBio, 2014, 5(6):e02153.
[5] NIELSEN J, LARSSON C, VAN MARIS A, et al. Metabolic engineering of yeast for production of fuels and chemicals[J]. Curr. Opin. Biotechnol., 2013, 24(3):398-404.
[6] MISAWA N. Pathway engineering for functional isoprenoids[J]. Curr. Opin. Biotechnol., 2011, 22(5):627-633.
[7] ZHANG G, CAO Q, LIU J, et al. Refactoring β-amyrin synthesis in Saccharomyces cerevisiae[J]. AIChE Journal, 2015, 61(10):3172-3179.
[8] CARDENAS J, DA SILVA N A. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis[J]. Metab. Eng., 2016, 36:80-89.
[9] WEINERT B T, IESMANTAVICIUS V, MOUSTAFA T, et al. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae[J]. Mol. Syst. Biol., 2014, 10:716.
[10] BOWMAN S B, ZAMAN Z, COLLINSON L P, et al. Positive regulation of the LPD1 gene of Saccharomyces cerevisiae by the HAP2/HAP3/HAP4 activation system[J]. Mol. Gen. Genet., 1992, 231(2):296-303.
[11] GEY U, CZUPALLA C, HOFLACK B, et al. Yeast pyruvate dehydrogenase complex is regulated by a concerted activity of two kinases and two phosphatases[J]. J. Biol. Chem., 2008, 283(15):9759-9767.
[12] PRONK J T, YDE STEENSMA H, VAN DIJKEN J P. Pyruvate metabolism in Saccharomyces cerevisiae[J]. Yeast, 1996, 12(16):1607-1633.
[13] HEYLAND J, FU J, BLANK L M. Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae[J]. Microbiology, 2009, 155(12):3827-3837.
[14] TAKAHASHI H, MCCAFFERY J M, IRIZARRY R A, et al. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription[J]. Molecular Cell, 2006, 23(2):207-217.
[15] STARAI V J, ESCALANTE-SEMERENA J C. Acetyl-coenzyme a synthetase (AMP forming)[J]. Cell Mol. Life Sci., 2004, 61(16):2020-2030.
[16] AL-FEEL W, CHIRALA S S, WAKIL S J. Cloning of the yeast FAS3 gene and primary structure of yeast acetyl-CoA carboxylase[J]. Proc. Natl. Acad Sci. U S A, 1992, 89(10):4534-4538.
[17] HOJA U, MARTHOL S, HOFMANN J, et al. HFA1 encoding an organelle-specific acetyl-CoA carboxylase controls mitochondrial fatty acid synthesis in Saccharomyces cerevisiae[J]. J. Biol. Chem., 2004, 279(21):21779-21786.
[18] HISER L, BASSON M E, RINE J. ERG10 from Saccharomyces cerevisiae encodes acetoacetyl-CoA thiolase[J]. J. Biol. Chem., 1994, 269(50):31383-31389.
[19] SOPPA J. Protein acetylation in archaea, bacteria, and eukaryotes[J]. Archaea, 2010, 2010:820681.
[20] JONES J D, O'CONNOR C D. Protein acetylation in prokaryotes[J]. Proteomics, 2011, 11(15):3012-3022.
[21] KURDISTANI S K, TAVAZOIE S, GRUNSTEIN M. Mapping global histone acetylation patterns to gene expression[J]. Cell, 2004, 117(6):721-733.
[22] VAN ROERMUND C W, ELGERSMA Y, SINGH N, et al. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD (H)and acetyl-CoA under in vivo conditions[J]. The EMBO Journal, 1995, 14:3480-3486.
[23] VAN ROERMUND C W T, HETTEMA E H, VAN DEN BERG M, et al. Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p[J]. The EMBO Journal, 1999, 18:5843-5852.
[24] HYNES M J, MURRAY S L. ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans[J]. Eukaryot Cell, 2010, 9(7):1039-1048.
[25] SHIBA Y, PARADISE E M, KIRBY J, et al. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids[J]. Metab. Eng., 2007, 9(2):160-168.
[26] 陈孚江,周景文,史仲平,等.乙酰辅酶A合成代谢对酿酒酵母生理功能的影响[J].微生物学报, 2010, 50(9):1172-1179. CHEN F J, ZHOU J W, SHI Z P, et al. Effect of acetyl-CoA synthase gene overexpression on physiological function of Saccharomyces cerevisiae[J]. Acta Microbiologica Sinica, 2010, 50(9):1172-1179.
[27] CHEN Y, DAVIET L, SCHALK M, et al. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism[J]. Metab. Eng., 2013, 15:48-54.
[28] EVANS C T, RATLEDGE C. Induction of xylulose-5-phosphate phosphoketolase in a variety of yeasts grown ond-xylose:the key to efficient xylose metabolism[J]. Archives of Microbiology, 1984, 139(1):48-52.
[29] KANDLER O. Carbohydrate metabolism in lactic acid bacteria[J]. Antonie Van Leeuwenhoek, 1983, 49(3):209-224.
[30] HEATH E C, HURWITZ J, HORECKER B L, et al. Pentose fermentation by Lactobacillus plantarum:I. The cleavage of xylulose 5-phosphate by phosphoketolase[J]. J. Biol. Chem., 1958, 231(2):1009-1029.
[31] FLAMHOLZ A, NOOR E, BAR-EVEN A, et al. eQuilibrator-the biochemical thermodynamics calculator[J]. Nucleic Acids Res., 2012, 40(Database issue):770-775.
[32] SONDEREGGER M, SCHUMPERLI M, SAUER U. Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae[J]. Appl. Environ. Microbiol., 2004, 70(5):2892-2897.
[33] MEADOWS A L, HAWKINS K M, TSEGAYE Y, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production[J]. Nature, 2016, 537(7622):694-697.
[34] KOZAK B U, VAN ROSSUM H M, BENJAMIN K R, et al. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis[J]. Metab. Eng., 2014, 21:46-59.
[35] RATLEDGE C, WYNN J P. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms[J]. Adv. Appl. Microbiol., 2002, 51:1-51.
[36] FATLAND B L, KE J, ANDERSON M D, et al. Molecular characterization of a heteromeric ATP-citrate lyase that generates cytosolic acetyl-coenzyme A in Arabidopsis[J]. Plant Physiol., 2002, 130(2):740-56.
[37] LIAN J, SI T, NAIR N U, et al. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains[J]. Metab. Eng., 2014, 24:139-49.
[38] RODRIGUEZ S, DENBY C M, VAN VU T, et al. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae[J]. Microb. Cell Fact., 2016, 15:48.
[39] OLZHAUSEN J, SCHUBBE S, SCHULLER H J. Genetic analysis of coenzyme A biosynthesis in the yeast Saccharomyces cerevisiae:identification of a conditional mutation in the pantothenate kinase gene CAB1[J]. Curr. Genet., 2009, 55(2):163-173.
[40] SCHADEWEG V, BOLES E. Increasing n-butanol production with Saccharomyces cerevisiae by optimizing acetyl-CoA synthesis, NADH levels and trans-2-enoyl-CoA reductase expression[J]. Biotechnol Biofuels, 2016, 9:257.
[41] LIU W, ZHANG B, JIANG R. Improving acetyl-CoA biosynthesis in Saccharomyces cerevisiae via the overexpression of pantothenate kinase and PDH bypass[J]. Biotechnol Biofuels, 2017, 10:41.
[42] VAN ROERMUND C W, ELGERSMA Y, SINGH N, et al. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD (H) and acetyl-CoA under in vivo conditions[J]. EMBO J., 1995, 14(14):3480-3486.
[43] VAN ROERMUND C W, HETTEMA E H, VAN DEN BERG M, et al. Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p[J]. EMBO J., 1999, 18(21):5843-5852.
[44] HU J, DONG L, OUTTEN C E. The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix[J]. J. Biol. Chem., 2008, 283(43):29126-29134.
[45] YUAN J, CHING C B. Mitochondrial acetyl-CoA utilization pathway for terpenoid productions[J]. Metab. Eng., 2016, 38:303-309.
[46] LU X, WANG F, ZHOU P, et al. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae[J]. Nat. Commun., 2016, 7:12851. |