1 |
VEYS K, LABRO A J, SCHUTTER E De, et al. Quantitative single-cell ion-channel gene expression profiling through an improved qRT-PCR technique combined with whole cell patch clamp[J]. Journal of Neuroscience Methods, 2012, 209(1): 227-234.
|
2 |
TADA T, OHMORI M, IIDA H. Molecular dissection of the hydrophobic segments H3 and H4 of the yeast Ca2+ channel component Mid1[J]. Journal of Biological Chemistry, 2003, 278(11): 9647-9654.
|
3 |
SU Z, ANISHKIN A, KUNG C, SAIMI Y. The core domain as the force sensor of the yeast mechanosensitive TRP channel[J]. Journal of General Physiology, 2011, 138(6): 627-640.
|
4 |
贾炜娇, 代广斌, 耿国帅, 等. 膜片钳技术在细胞电生理研究方面的最新应用[J]. 高校化学工程学报, 2018, 32(4): 767-778.
|
|
JIA Weijiao, DAI Guangbin, GENG Guosuai, et al. Recent studies on the application of patch-clamp technique in cellular electrophysiology[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(4): 767-778.
|
5 |
CHEN P, ZHANG W, ZHOU J, et al. Development of planar patch clamp technology and its application in the analysis of cellular electrophysiology[J]. Progress in Natural Science, 2009, 19(2): 153-160.
|
6 |
FOURATI Z, HOWARD R J, HEUSSER S A, et al. Structural basis for a bimodal allosteric mechanism of general anesthetic modulation in pentameric ligand-gated ion channels[J]. Cell Reports, 2018, 23(4): 993-1004.
|
7 |
THONGHIN N, KARGAS V, CLEWS J, et al. Cryo-electron microscopy of membrane proteins[J]. Methods, 2018, 147: 176-186.
|
8 |
PATINO-GARCIA D, ROCHA-PEREZ N, MORENO R D, et al. Antigen retrieval by citrated solution improves western blot signal[J]. MethodsX, 2019, 6: 464-468.
|
9 |
SUURS F V, HOOGE M N L, VRIES E G E D, et al. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges[J]. Pharmacology & Therapeutics, 2019, 201: 103-119.
|
10 |
SINGH A. Antibodies: monoclonal and polyclonal[M]//CHAUDHARY S, AGARWAL A, VERMA A S. Animal Biotechnology. Salt Lake: Academic Press, 2014: 265-287.
|
11 |
任建委, 小扎桑. 单克隆抗体技术的基本原理、改进及应用[J]. 高原科学研究, 2018(4): 110-115.
|
|
REN Jianwei, XIAO Zasang. Basic principle, improvement and application of monoclonal antibody technology[J]. Plateau Science Research, 2018(4): 110-115.
|
12 |
ROSENSTEIN S, VAISMAN-MENTESH A, LEVY L, et al. Production of F(ab’)2 from monoclonal and polyclonal antibodies[J]. Current Protocols in Molecular Biology, 2020, 131(1): e119.
|
13 |
PAIDHUNGAT M, GARRETT S. A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1 (Ts) growth defect[J]. Molecular and Cellular Biology, 1997, 17(11): 6339-6347.
|
14 |
KANZAKI M, NAGASAWA M, KOJIMAL I, et al. Molecular identification of a eukaryotic, stretch-activated nonselective cation channel[J]. Science, 1999, 285(5429): 882-886.
|
15 |
PALMER C P, ZHOU X L, LIN J, et al. A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca2+-permeable channel in the yeast vacuolar membrane[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(14): 7801-7805.
|
16 |
AMINI M, WANG H, BELKACEMI A, et al. Identification of inhibitory Ca2+ binding sites in the upper vestibule of the yeast vacuolar TRP channel[J]. iScience, 2019, 11: 1-12.
|
17 |
TENG J, IIDA K, IMAI A, et al. Hyperactive and hypoactive mutations in Cch1, a yeast homologue of the voltage-gated calcium-channel pore-forming subunit[J]. Microbiology, 2013, 159(Pt 5): 970-979.
|
18 |
CHANDEL A, DAS K K, BACHHAWAT A K. Glutathione depletion activates the yeast vacuolar transient receptor potential channel, Yvc1p, by reversible glutathionylation of specific cysteines[J]. Molecular Biology of the Cell, 2016, 27(24): 3913-3925.
|
19 |
YOSHIMURA H, TADA T, IIDA H. Subcellular localization and oligomeric structure of the yeast putative stretch-activated Ca2+ channel component Mid1[J]. Experimental Cell Research, 2004, 293(2): 185-195.
|
20 |
CHANDEL A, BACHHAWAT A K. Redox regulation of the yeast voltage-gated Ca2+ channel homology Cch1p, by glutathionylation of specific cysteine residues[J]. Journal of Cell Science, 2017, 130(14): 2317-2328.
|
21 |
MARTIN D C, KIM H, MACKIN N A, et al. New regulators of a high affinity Ca2+ influx system revealed through a genome-wide screen in yeast[J]. Journal of Biological Chemistry, 2011, 286(12): 10744-10754.
|
22 |
HAMAMOTO S, MORI Y, YABE I, et al. In vitro and in vivo characterization of modulation of the vacuolar cation channel TRPY1 from Saccharomyces cerevisiae[J]. The FEBS Journal, 2018, 285(6): 1146-1161.
|
23 |
LIAO J L, HUANG Y J. Evaluation of protocols used in 2-D electrophoresis for proteome analysis of young rice caryopsis[J]. Genomics Proteomics and Bioinformatics, 2011, 9(6): 229-237.
|
24 |
VU K, BAUTOS J, HONG M P, et al. The functional expression of toxic gene: lessons learned from molecular cloning of CCH1, a high-affinity Ca2+ channel[J]. Analytical Biochemistry, 2009, 393(2): 234-241.
|
25 |
DONG X Y, YUAN X, WANG R J. Interaction of air cold plasma with Saccharomyces cerevisiae in the multi-scale microenvironment for improved ethanol yield[J]. Bioresource Technology, 2021, 323: 124621.
|
26 |
DONG X Y. Fuel ethanol production from sugarcane[M]. London: IntechOpen, 2019: 157-175.
|
27 |
DONG X Y, LIU T, XIONG Y. A novel approach to regulate cell membrane permeability for ATP and NADH formation in Saccharomyces cerevisiae induced by air cold plasma[J]. Plasma Science and Technology, 2017, 19: 024001.
|
28 |
COUCHESNE W E, VLASEK C, KLUKOVICH R, et al. Ethanol induces calcium influx via the Cch1-Mid1 transporter in Saccharomyces cerevisiae[J]. Archives of Microbiology, 2011, 193(5): 323-334.
|
29 |
FISCHER M, SCHNELL N, CHATTAWAY J, et al. The Saccharomyces cerevisiae CCH1 gene is involved in calcium influx and mating[J]. FEBS Letters, 1997, 419(2/3): 259-262.
|
30 |
IIDA H, NAKAMURA H, ONO T, et al. MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating[J]. Molecular and Cellular Biology, 1994, 14(12): 8259-8271.
|
31 |
BERRIDGE M, BOOTMAN M, RODERICK H. Calcium signaling: dynamics, homeostasis and remodeling[J]. Nature Reviews Molecular Cell Biology, 2003, 4(7): 517-529.
|
32 |
BERTL A, GRADMANN D, SLAYMAN C. Calcium- and voltage-dependent ion channels in Saccharomyces cerevisiae[J]. Philosophical Transactions of the Royal Society B, 1992, 338(1283): 63-72.
|
33 |
董晓宇, 唐乾, 王仁军, 等. 酿酒酵母钙通道膜蛋白Cch1p、Mid1p和Yvc1p抗原、抗体、制备方法和应用: CN201910468785.8[P]. 2019-11-13.
|
|
DONG Xiaoyu, TANG Qian, WANG Renjun, et al. Preparation and application of antigens and antibodies of Cch1p, Mid1p and Yvc1p of calcium channel in Saccharomyces cerevisiae: CN201910468785.8[P]. 2019-11-13.
|