1 |
KRIVORUCHKOA, ZHANGY, SIEWERSV, et al. Microbial acetyl-CoA metabolism and metabolic engineering[J]. Metabolic Engineering, 2015, 28: 28-42.
|
2 |
CHENX, ZHOUL, TIANK, et al. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production[J]. Biotechnology Advances, 2013, 31(8): 1200-1223.
|
3 |
HOLMSW H. The central metabolic pathways of Escherichia coli: relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate[J]. Current Topics in Cellular Regulation, 1986, 28(4): 69-105.
|
4 |
HAHMD H, PANJ, RHEEJ S. Characterization and evaluation of a pta (phosphotransacetylase) negative mutant of Escherichia coli HB101 as production host of foreign lipase[J]. Appl. Microbiol. Biotechnol., 1994, 42(1): 100-107.
|
5 |
LINH, CASTRON M, BENNETTG N, et al. Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: a potential tool in metabolic engineering[J]. Applied Microbiology and Biotechnology, 2006, 71(6): 870-874.
|
6 |
WANGR, SHIZ, CHENJ, et al. Enhanced co-production of hydrogen and poly-(R)-3-hydroxybutyrate by recombinant PHB producing E. coli over-expressing hydrogenase and acetyl-CoA synthetase[J]. Metabolic Engineering, 2012, 14(5): 496-503.
|
7 |
SOMAY, YAMAJIT, MATSUDAF, et al. Synthetic metabolic bypass for a metabolic toggle switch enhances acetyl-CoA supply for isopropanol production by Escherichia coli[J]. Journal of Bioscience and Bioengineering, 2017, 123(5): 625-633.
|
8 |
LEONARDE, LIM K H, SAW P N, et al. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli[J]. Applied and Environmental Microbiology, 2007, 73(12): 3877-3886.
|
9 |
WOLFEA J. The acetate switch[J]. Microbiology and Molecular Biology Reviews, 2005, 69(1): 12-50.
|
10 |
CHANGD E, SHINS, RHEEJ S, et al. Acetate metabolism in a pta mutant of Escherichia coli W3110: importance of maintaining acetyl coenzyme A flux for growth and survival[J]. Journal of Bacteriology, 1999, 181(21): 6656-6663.
|
11 |
MIYAKEM, MIYAMOTOC, SCHNACKENBERGJ, et al. Phosphotransacetylase as a key factor in biological production of polyhydroxybutyrate[J]. Applied Biochemistry Biotechnology, 2000, 84-86(1): 1039-1044.
|
12 |
VADALIR V, HORTONC E, RUDOLPHF B, et al. Production of isoamyl acetate in ackA-pta and/or ldh mutants of Escherichia coli with overexpression of yeast ATF2[J]. Applied Microbiology and Biotechnology, 2004, 63(6): 698-704.
|
13 |
ZHAW, RUBIN-PITELS B, SHAOZ, et al. Improving cellular malonyl-CoA level in Escherichia colivia metabolic engineering[J]. Metabolic Engineering, 2009, 11(3): 192-198.
|
14 |
FENGJ, ATKINSONM R, MCCLEARYW, et al. Role of phosphorylated metabolic intermediates in the regulation of glutamine synthetase synthesis in Escherichia coli[J]. Journal of Bacteriology, 1992, 174(19): 6061-6070.
|
15 |
OH M, ROHLINL, KAO K C, et al. Global expression profiling of acetate-grown Escherichia coli[J]. Journal of Biological Chemistry, 2002, 277(15): 13175-13183.
|
16 |
LIUY, WUH, LIQ, et al. Process development of succinic acid production by Escherichia coli NZN111 using acetate as an aerobic carbon source[J]. Enzyme and Microbial Technology, 2011, 49(5): 459-464.
|
17 |
MURARKAA, CLOMBURGJ M,MORANS,et al. Metabolic analysis of wild-type Escherichia coli and a pyruvate dehydrogenase complex (PDHC)-deficient derivative reveals the role of PDHC in the fermentative metabolism of glucose[J]. The Journal of Biological Chemistry, 2010, 285(41): 31548-31558.
|
18 |
JANTAMAK, HAUPTM J, SVORONOSS A, et al. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate[J]. Biotechnology and Bioengineering, 2008, 99(5): 1140-1153.
|
19 |
SKOROKHODOVAA Y. Anaerobic synthesis of succinic acid by recombinant Escherichia coli strains with activated NAD+-reducing pyruvate dehydrogenase complex[J]. Applied Biochemistry and Microbiology, 2011, 4(47): 373-380.
|
20 |
SKOROKHODOVAA Y, GULEVICHA Y, MORZHAKOVAA A, et al. Comparison of different approaches to activate the glyoxylate bypass in Escherichia coli K-12 for succinate biosynthesis during dual-phase fermentation in minimal glucose media[J]. Biotechnology Letters, 2013, 35(4): 577-583.
|
21 |
KIMY, INGRAML O, SHANMUGAMK T. Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12[J]. Journal of Bacteriology, 2008, 190(11): 3851-3858.
|
22 |
ATSUMIS, CANNA F, CONNORM R, et al. Metabolic engineering of Escherichia coli for 1-butanol production[J]. Metabolic Engineering, 2008, 10(6): 305-311.
|
23 |
ABDEL-HAMIDA M, ATTWOODM M, GUESTJ R. Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli[J]. Microbiology, 2001, 147(6): 1483-1498.
|
24 |
PARIMIN S, DURIEI A, WUX, et al. Eliminating acetate formation improves citramalate production by metabolically engineered Escherichia coli[J]. Microbial Cell Factories, 2017, 16(1): 114-124.
|
25 |
DITTRICHC R, VADALIR V, BENNETTG N, et al. Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate[J]. Biotechnology Progress, 2005, 21(2): 627-631.
|
26 |
HANM J, YOONS S, LEE S Y. Proteome analysis of metabolically engineered Escherichia coli producing poly(3-hydroxybutyrate)[J]. Journal of Bacteriology, 2001, 183(1): 301-308.
|
27 |
LEE S H, KANGK, KIME Y, et al. Metabolic engineering of Escherichia coli for enhanced biosynthesis of poly(3-hydroxybutyrate) based on proteome analysis[J]. Biotechnology Letters, 2013, 35(10): 1631-1637.
|
28 |
XUP, RANGANATHANS, FOWLERZ L, et al. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA[J]. Metabolic Engineering, 2011, 13(5): 578-587.
|
29 |
FOWLERZ L, GIKANDIW W, KOFFASM A G. Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production[J]. Applied and Environmental Microbiology, 2009, 75(18): 5831-5839.
|
30 |
LIUM, DINGY, CHENH, et al. Improving the production of acetyl-CoA-derived chemicals in Escherichia coli BL21(DE3) through iclR and arcA deletion[J]. BMC Microbiology, 2017, 17(1): 2-9.
|
31 |
LEE E. Directing vanillin production from ferulic acid by increased acetyl-CoA consumption in recombinant Escherichia coli[J]. Biotechnology, 2009, 1(102): 200-208.
|
32 |
JUNGY-M,J-NLEE,H-DSHIN, et al. Role of tktA gene in pentose phosphate pathway on odd-ball biosynthesis of poly-β-hydroxybutyrate in transformant Escherichia coli harboring phbCAB operon[J]. Journl of Bioscience and Bioengineering, 2004, 98(3): 224-227.
|
33 |
SONGB, KIMT, JUNGY, et al. Modulation of talA gene in pentose phosphate pathway for overproduction of poly-β-hydroxybutyrate in transformant Escherichia coli harboring phbCAB operon[J]. Journal of Bioscience and Bioengineering, 2006, 102(3): 237-240.
|
34 |
LIM S, JUNGY, SHINH, et al. Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon[J]. Journal of Bioscience and Bioengineering, 2002, 93(6): 543-549.
|
35 |
ZHANGY, LINZ, LIUQ, et al. Engineering of Serine-Deamination pathway, Entner-Doudoroff pathway and pyruvate dehydrogenase complex to improve poly(3-hydroxybutyrate) production in Escherichia coli[J]. Microbial Cell Factories, 2014, 13(1): 172.
|
36 |
CHANGA S, SHERAZIS T H, KANDHROA A, et al. Characterization of palm fatty acid distillate of different oil processing industries of pakistan[J]. Journal of Oleo Science, 2016, 65(11): 897-901.
|
37 |
LIUB, XIANGS, ZHAOG, et al. Efficient production of 3-hydroxypropionate from fatty acids feedstock in Escherichia coli[J]. Metabolic Engineering, 2019, 51: 121-130.
|
38 |
RAGSDALES W, PIERCEE. Acetogenesis and the wood–Ljungdahl pathway of CO2 fixation[J]. Biochimica et Biophysica Acta (BBA): Proteins and Proteomics, 2008, 1784(12): 1873-1898.
|
39 |
BOGORADI W, LINT, LIAOJ C. Synthetic non-oxidative glycolysis enables complete carbon conservation[J]. Nature, 2013, 502(7473): 693-697.
|
40 |
ZHENGY, YUANQ, YANGX, et al. Engineering Escherichia coli for poly(3-hydroxybutyrate) production guided by genome-scale metabolic network analysis[J]. Enzyme and Microbial Technology, 2017, 106: 60-66.
|
41 |
YANGX, YUANQ, ZHENGY, et al. An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli[J]. Biotechnology Letters, 2016, 38(8): 1359-1365.
|
42 |
LINP P, JAEGERA J, WUT, et al. Construction and evolution of an Escherichia coli strain relying on nonoxidative glycolysis for sugar catabolism[J]. Proceedings of the National Academy of Sciences, 2018, 115(14): 3538-3546.
|
43 |
WANGQ, XUJ, SUNZ, et al. Engineering an in vivo EP-bifido pathway in Escherichia coli for high-yield acetyl-CoA generation with low CO2 emission[J]. Metabolic Engineering, 2019, 51: 79-87.
|
44 |
PIETROCOLAF, GALLUZZIL, KROEMERG. Acetyl coenzyme A:a central matabolite and second messenger[J]. Cell Metabolism, 2015, 6(21): 805-821.
|
45 |
HADADIN, HAFNERJ, SHAJKOFCIA, et al. ATLAS of biochemistry: a repository of all possible biochemical reactions for synthetic biology and metabolic engineering studies[J]. ACS Synthetic Biology, 2016, 5(10): 1155-1166.
|
46 |
RENJ, ZHOUL, WANGC, et al. An unnatural pathway for efficient 5-aminolevulinic acid biosynthesis with glycine from glyoxylate based on retrobiosynthetic design[J]. ACS Synthetic Biology, 2018, 7(12): 2750-2757.
|
47 |
WILKESH, BUCKELW, GOLDINGB T, et al. Metabolism of hydrocarbons in n-alkane-utilizing anaerobic bacteria[J]. Journal of Molecular Microbiology and Biotechnology, 2016, 26(1-3): 138-151.
|
48 |
CHOONY W, MOHAMADM S, DERISS, et al. A hybrid of bees algorithm and flux balance analysis with OptKnock as a platform for in silico optimization of microbial strains[J]. Bioprocess and Biosystems Engineering, 2014, 37(3): 521-532.
|
49 |
TYO K E, KOCHARINK, NIELSENJ. Toward design-based engineering of industrial microbes[J]. Current Opinion in Microbiology, 2010, 13(3): 255-262.
|
50 |
WARNERJ R, REEDERP J, KARIMPOUR-FARDA, et al. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides[J]. Nature Biotechnology, 2010, 28(8): 856-862.
|
51 |
WANGH H, ISAACSF J, CARRP A, et al. Programming cells by multiplex genome engineering and accelerated evolution[J]. Nature, 2009, 460(7257): 894-898.
|
52 |
SANTOSC N S, REGITSKYD D, YOSHIKUNIY. Implementation of stable and complex biological systems through recombinase-assisted genome engineering[J]. Nature Communications, 2013, 4(1) : 1-10.
|
53 |
GARSTA D, BASSALOM C, PINESG, et al. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering[J]. Nature Biotechnology, 2016, 35(1): 48-55.
|
54 |
LIUR, LIANGL, CHOUDHURYA, et al. Iterative genome editing of Escherichia coli for 3-hydroxypropionic acid production[J]. Metabolic Engineering, 2018, 47: 303-313.
|
55 |
LIUR, LIANGL, GARSTA D, et al. Directed combinatorial mutagenesis of Escherichia coli for complex phenotype engineering[J]. Metabolic Engineering, 2018, 47: 10-20.
|