化工进展 ›› 2019, Vol. 38 ›› Issue (9): 4227-4237.DOI: 10.16085/j.issn.1000-6613.2019-0089
收稿日期:
2019-01-14
出版日期:
2019-09-05
发布日期:
2019-09-05
通讯作者:
谢丽
作者简介:
徐俊(1996—),女,硕士研究生,研究方向为污水处理与资源化。E-mail:基金资助:
Received:
2019-01-14
Online:
2019-09-05
Published:
2019-09-05
Contact:
Li XIE
摘要:
将生物强化技术应用到厌氧消化过程中,可克服复杂底物类型或消极环境条件等不利因素,因而近年来备受研究者的青睐。本文从生物强化制剂的类型出发,阐述了细菌强化、真菌强化、古菌强化、互营微生物强化和生物酶强化对厌氧消化特性的影响,并在此基础上回顾了生物强化技术在木质纤维素类底物、受氨氮/丙酸抑制类废水和难降解有机物消化中的应用,最后讨论了附着型强化方式和多段式强化方式对生物强化技术的影响。大量研究表明生物强化技术具有显著促进厌氧消化特性的积极影响,但在部分研究中并未得到良好成效,生物强化制剂的选择是该技术的关键所在。利用互营微生物的协同代谢或提高生物酶在系统中的稳定性将稳固生物强化技术的作用。此外,选择合适的附着载体和投加策略将进一步拓展生物强化技术在废水厌氧处理中的应用。
中图分类号:
徐俊,朱雯喆,谢丽. 生物强化技术对厌氧消化特性影响研究进展[J]. 化工进展, 2019, 38(9): 4227-4237.
Jun XU,Wenzhe ZHU,Li XIE. Effect of bioaugmentation on the performance of anaerobic digestion: a review[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4227-4237.
类型 | 强化剂名称或来源 | 作用 | 参考文献 | |
---|---|---|---|---|
甲烷产量/% | 甲烷产率/% | |||
细菌 | P. xylanivorans Mz5T | +17.8 | [ | |
C. cellulovorans | +3.9 | |||
F. succinogenes S85 | +1.9 | |||
P. xylanivorans Mz5T and F. succinogenes S85 | +6.9 | |||
C. cellulovorans and F. succinogenes S85 | +4.2 | |||
SRB | + | [ | ||
真菌 | P. ostreatus | + | [ | |
细菌和真菌 | Culture of Yeast(Saccharomyces cerevisiae sp., Coccidioides immitis sp. and Hansenula anomala sp.)、Cellulose-decomposing bacteria(Bacillus licheniformis sp.,Pseudomonas sp., Bacillus subtilis sp., and Pleurotus florida sp.)and Lactobacillus deiliehii sp.Yeast | +11.28~42.02 | +26.7~75.57 | [ |
古菌 | Methanoculleus bourgensis MS2T | +31.3 | [ |
表1 细菌、真菌、古菌强化技术对厌氧消化特性的影响
类型 | 强化剂名称或来源 | 作用 | 参考文献 | |
---|---|---|---|---|
甲烷产量/% | 甲烷产率/% | |||
细菌 | P. xylanivorans Mz5T | +17.8 | [ | |
C. cellulovorans | +3.9 | |||
F. succinogenes S85 | +1.9 | |||
P. xylanivorans Mz5T and F. succinogenes S85 | +6.9 | |||
C. cellulovorans and F. succinogenes S85 | +4.2 | |||
SRB | + | [ | ||
真菌 | P. ostreatus | + | [ | |
细菌和真菌 | Culture of Yeast(Saccharomyces cerevisiae sp., Coccidioides immitis sp. and Hansenula anomala sp.)、Cellulose-decomposing bacteria(Bacillus licheniformis sp.,Pseudomonas sp., Bacillus subtilis sp., and Pleurotus florida sp.)and Lactobacillus deiliehii sp.Yeast | +11.28~42.02 | +26.7~75.57 | [ |
古菌 | Methanoculleus bourgensis MS2T | +31.3 | [ |
强化剂名称或来源 | 作用阶段 | 产气特性/% | 参考文献 | |
---|---|---|---|---|
水解 阶段 | 产氢产 乙酸阶段 | |||
Caldicellulosiruptor lactoaceticus 和 Dictyoglomus | √ | +10~24 | [ | |
Cellulose-degrading strain F2 | √ | +16.87 | [ | |
Phylum Bacteroidetes | √ | √ | +19~23 | [ |
Caldicellulosyruptor saccharolyticus | √ | 160~170 | [ | |
Phanerochaete chrysosporium | √ | + | [ | |
Neocallimastix sp. (hyphael monocentric) 和 Orpynomyces sp. (hyphael polycentric) | √ | +68.7~126.2 | [ | |
P. rhizinflata YM600 | √ | + | [ | |
genus Clostridium | √ | +56 | [ | |
Culture of Rikenellaceae、Clostridiaceae、Porphyromonadaceae、Bacteroidaceae 和 Ruminococcaceae | √ | √ | +109 | [ |
CRE、GRE、SRE | √ | +20~36 | [ |
表2 生物强化技术对木质纤维素底物厌氧消化特性的影响
强化剂名称或来源 | 作用阶段 | 产气特性/% | 参考文献 | |
---|---|---|---|---|
水解 阶段 | 产氢产 乙酸阶段 | |||
Caldicellulosiruptor lactoaceticus 和 Dictyoglomus | √ | +10~24 | [ | |
Cellulose-degrading strain F2 | √ | +16.87 | [ | |
Phylum Bacteroidetes | √ | √ | +19~23 | [ |
Caldicellulosyruptor saccharolyticus | √ | 160~170 | [ | |
Phanerochaete chrysosporium | √ | + | [ | |
Neocallimastix sp. (hyphael monocentric) 和 Orpynomyces sp. (hyphael polycentric) | √ | +68.7~126.2 | [ | |
P. rhizinflata YM600 | √ | + | [ | |
genus Clostridium | √ | +56 | [ | |
Culture of Rikenellaceae、Clostridiaceae、Porphyromonadaceae、Bacteroidaceae 和 Ruminococcaceae | √ | √ | +109 | [ |
CRE、GRE、SRE | √ | +20~36 | [ |
强化剂名称或来源 | 作用阶段 | 产气 特性/% | 参考文献 | |
---|---|---|---|---|
产氢产 乙酸阶段 | 产甲烷阶段 | |||
Methanoculleus bourgensis MS2T | √ | +31 | [ | |
Culture of Clostridium ultunense sp. Esp JCM16670、Tepidanaerobacter acetatoxydans DSM 21804、Syntrophaceticus schinkii JCM16669 和 Methanoculleus sp. strain MAB1 | √ | — | [ | |
Culture of Methanothermobacter thermautotrophicus (DSM 3720) 和 Methanosarcina thermophila (DSM 1825) | √ | + | [ | |
Culture of Methanoculleus spp.、 Tepidimicrobium spp.、 Aminobacterium spp.、 Petrimonas spp. 和 Defluviitoga spp. | √ | +40 | [ | |
Culture of Methanosaetaceae、 Methanospirillum 和 Methanosphaerula | √ | √ | + | [ |
Culture of Methanosaet、Methanoculleus 和 Methanospirillum | √ | √ | +25~60 | [ |
表3 生物强化技术对受限制类底物厌氧消化的影响
强化剂名称或来源 | 作用阶段 | 产气 特性/% | 参考文献 | |
---|---|---|---|---|
产氢产 乙酸阶段 | 产甲烷阶段 | |||
Methanoculleus bourgensis MS2T | √ | +31 | [ | |
Culture of Clostridium ultunense sp. Esp JCM16670、Tepidanaerobacter acetatoxydans DSM 21804、Syntrophaceticus schinkii JCM16669 和 Methanoculleus sp. strain MAB1 | √ | — | [ | |
Culture of Methanothermobacter thermautotrophicus (DSM 3720) 和 Methanosarcina thermophila (DSM 1825) | √ | + | [ | |
Culture of Methanoculleus spp.、 Tepidimicrobium spp.、 Aminobacterium spp.、 Petrimonas spp. 和 Defluviitoga spp. | √ | +40 | [ | |
Culture of Methanosaetaceae、 Methanospirillum 和 Methanosphaerula | √ | √ | + | [ |
Culture of Methanosaet、Methanoculleus 和 Methanospirillum | √ | √ | +25~60 | [ |
附着类型 | 载体 | 产甲烷特性/% | 作用机理 | 参考文献 |
---|---|---|---|---|
直接附着型 | 活性炭 | +63~96 | 提供附着场所;强化菌群的多样性和菌落结构 | [ |
沸石 | +36 | 提供了附着载体;改变微生物结构以及生物酶的转化 | [ | |
生物炭 | +45.24 | 提供附着场所 | [ | |
+11 | [ | |||
包埋附着型 | 海泡石 | +200 | 增强微生物适应能力;减少甚至避免微生物在环境中被捕食的可能性 | [ |
海藻酸钠 | + | [ | ||
聚乙烯醇 | + | [ |
表4 附着型强化对生物强化技术作用的影响
附着类型 | 载体 | 产甲烷特性/% | 作用机理 | 参考文献 |
---|---|---|---|---|
直接附着型 | 活性炭 | +63~96 | 提供附着场所;强化菌群的多样性和菌落结构 | [ |
沸石 | +36 | 提供了附着载体;改变微生物结构以及生物酶的转化 | [ | |
生物炭 | +45.24 | 提供附着场所 | [ | |
+11 | [ | |||
包埋附着型 | 海泡石 | +200 | 增强微生物适应能力;减少甚至避免微生物在环境中被捕食的可能性 | [ |
海藻酸钠 | + | [ | ||
聚乙烯醇 | + | [ |
1 | MAOC , FENGY , WANGX , et al. Review on research achievements of biogas from anaerobic digestion[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 540-555. |
2 | XUC J , WANGA J , CHENL N , et al. Research progress on cellulose degradation bacteria isolation and utilization[J]. Applied Mechanics and Materials, 2013, 448-453:1612-1615. |
3 | 王晓东,张光辉,顾平,等. 水体中氯酚类污染物的生物降解性研究进展[J].中国给水排水,2008, 24(16): 17-21. |
WANGX D, ZHANGG H, GUP, et al. Research progress in biodegradation of chlorophenols in water[J]. China Water & Wastewater, 2008, 24(16): 17-21. | |
4 | MECKENSTOCKR U , SAFINOWSKIM , GRIEBLERC . Anaerobic degradation of polycyclic aromatic hydrocarbons[J]. Fems Microbiology Ecology, 2010, 49(1): 27-36. |
5 | 胡恒宇, 韦安培, 刘少梅. 石油烃厌氧降解产甲烷研究进展[J]. 化学与生物工程,2017, 34(8):16-21. |
HUH Y, WEIA P, LIUS M. Research progress in methane-producing by anaerobic degradation of petroleum hydrocarbon[J]. Chemistry & Bioengineering, 2017, 34(8):16-21. | |
6 | GERECKEA C , HARTMANNP C , HEEBN V , et al. Anaerobic degradation of decabromodiphenyl ether[J]. Environmental Science & Technology, 2005, 39(4):1078-1083. |
7 | MULATD G, HUERTAS G, KALYANID, et al. Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium Caldicellulosiruptorbescii[J]. Biotechnology for Biofuels, 2018, 11(1):19. |
8 | CHENJ L , ORTIZR , STEELET W J , et al. Toxicants inhibiting anaerobic digestion: a review[J]. Biotechnology Advances, 2014, 32(8):1523-1534. |
9 | HERREROM , STUCKEYD C . Bioaugmentation and its application in wastewater treatment: a review[J]. Chemosphere, 2015, 140:119-128. |
10 | AGATHOSS N . Is bioaugmentation a feasible strategy for pollutant removal and site remediation?[J]. Current Opinion in Microbiology, 2005, 8(3): 268-275. |
11 | BRÉMONDU, DE BUYERR, STEYERJ P, et al. Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 583-604. |
12 | KüesURSULA. Fungal enzymes for environmental management[J]. Current Opinion in Biotechnology, 2015, 33:268-278. |
13 | YAOL, TENGY, LUOY, et al. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by, Trichoderma reesei, FS10-C and effect of bioaugmentation on an aged PAH-contaminated soil[J]. Bioremediation Journal, 2015, 19(1): 9-17. |
14 | LIY B, KUMARS K. Bioenergy: principles and applications[M]. Wiley-Blackwell, 2016. |
15 | 王凯军. 厌氧生物技术[M]. 北京:化学工业出版社, 2015. |
WANGKaijun. Anaerobic biotechnology[M]. Beijing: Chemical Industry Press, 2015. | |
16 | LIUY, WHITMANW B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea[J]. Annals of the New York Academy of Sciences, 2010, 1125(1):171-189. |
17 | ČATERM, FANEDLL , ŠMALOVRH,et al. Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria[J]. Bioresource Technology, 2015, 186: 261-269. |
18 | MOHANS V, RAON C, PRASADK K, et al. Bioaugmentation of an anaerobic sequencing batch biofilm reactor (AnSBBR) with immobilized sulphate reducing bacteria (SRB) for the treatment of sulphate bearing chemical wastewater[J]. Process Biochemistry, 2005, 40(8): 2849-2857. |
19 | FOUNTOULAKISM S, DOKIANAKISS N, KORNAROSM E, et al. Removal of phenolics in olive mill wastewaters using the white-rot fungus Pleurotusostreatus[J]. Water Research, 2002, 36(19):4735-4744. |
20 | ZHONGW, ZHANGZ, LUOY, et al. Effect of biological pretreatments in enhancing corn straw biogas production[J]. Bioresource Technology, 2011, 102(24): 11177-11182. |
21 | 李曙光, 皮昀丹, ZHANGChuan-lun. 古菌研究及其展望[J]. 中国科学技术大学学报, 2007, 37(8): 830-838. |
LIShuguang, PIYundan, ZHANGChuan-lun. Archaeological research and prospects[J]. Journal of China University of Science and Technology, 2007, 37(8): 830-838. | |
22 | FOTIDISI A , WANGH , FIEDELN R , et al. Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate[J]. Environmental Science & Technology, 2014, 48(13):7669. |
23 | MORRISB E L , HENNEBERGERR , HUBERH , et al. Microbial syntrophy: interaction for the common good[J]. Fems Microbiology Reviews, 2013, 37(3):384-406. |
24 | LEBIOCKAM, MONTUSIEWICZA, CYDZIK-KWIATKOWSKAA. Effect of bioaugmentation on biogas yields and kinetics in anaerobic digestion of sewage sludge[J]. International Journal of Environmental Research and Public Health, 2018, 15(8): 1717. |
25 | WESTERHOLMM, LEVÉNL, SCHNÜRERA. Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia[J]. Applied and Environmental Microbiology, 2012, 78(21): 7619-7625. |
26 | HENDRIKSA T, ZEEMANG. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology, 2009, 100(1):10-18. |
27 | JUNTARASIRIP, NIJSUNKIJS, BUATICKT, et al. Enhancing biogas production from padauk angsana leave and wastewater feedstock through alkaline and enzyme pretreatment[J]. Energy Procedia, 2011, 9: 207-215. |
28 | BRULÉM, LEMMERA, OECHSNERH, et al. Effect of adding fibrolitic enzymes to the methane yields of rye silage[J]. Landtechnik, 2008, 63(3):178-179. |
29 | APLOECHLM, HILSEA, HEIERMANNM, et al. Application of hydrolytic enzymes for improving biogas feedstock fluidity[J]. Agricultural Engineering International, 2010, 11(3):1-16. |
30 | PARAWIRAW. Enzyme research and applications in biotechnological intensification of biogas production[J]. Critical Reviews in Biotechnology, 2012, 32(2):172-186. |
31 | MÜLLERL, KRETZSCHMARJ, PRÖTERJ, et al. Does the addition of proteases affect the biogas yield from organic material in anaerobic digestion?[J]. Bioresource Technology, 2015, 203: 267-271. |
32 | BRÉMONDU, DE BUYERR , J-PSTEYER , et al. Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale[J]. Renewable and Sustainable Energy Reviews, 2018, 90:583-604. |
33 | TEO C W, WONGP C Y. Enzyme augmentation of an anaerobic membrane bioreactor treating sewage containing organic particulates[J]. Water Research, 2014, 48:335-344. |
34 | BINNERR, MENATHV, HUBERH, et al. Comparative study of stability and half-life of enzymes and enzyme aggregates implemented in anaerobic biogas processes[J]. Biomass Conversion and Biorefinery, 2011, 1(1):1-8. |
35 | ODNELLA, RECKTENWALDM, STENSÉNK, et al. Activity, life time and effect of hydrolytic enzymes for enhanced biogas production from sludge anaerobic digestion[J]. Water Research, 2016, 103:462-471. |
36 | JEIHANIPOURA, NIKLASSONC, TAHERZADEHM J. Enhancement of solubilization rate of cellulose in anaerobic digestion and its drawbacks[J]. Process Biochemistry, 2011, 46(7):1509-1514. |
37 | GHOSHA, BHATTACHARYYAB C. Biomethanation of white rotted and brown rotted rice straw[J]. Bioprocess Engineering, 1999, 20(4):297-302. |
38 | NIELSENH B, MLADENOVSKAZ, AHRINGB K. Bioaugmentation of a two-stage thermophilic (68 degrees C/55 degrees C) anaerobic digestion concept for improvement of the methane yield from cattle manure[J]. Biotechnology & Bioengineering, 2010, 97(6):1638-1643. |
39 | NIUM F , WANGS Y , XUW D , et al. Effect of a cellulose-degrading strain on anaerobic fermentation of corn straw[J]. Advanced Materials Research, 2012, 356-360: 2510-2514. |
40 | ZHANGJ, GUOR B, QIUY L, et al. Bioaugmentation with an acetate-type fermentation bacterium Acetobacteroides hydrogenigenes improves methane production from corn straw[J]. Bioresource Technology, 2015, 179(1):306-313. |
41 | BAGIZ, ÁCSN, BÁLINTB, et al. Biotechnological intensification of biogas production[J]. Applied Microbiology & Biotechnology, 2007, 76(2): 473-482. |
42 | 杨玉楠, 陈亚松, 杨敏. 利用白腐菌生物预处理强化秸秆发酵产甲烷研究[J]. 农业环境科学学报, 2007, 1(5):1968-1972. |
YANGYunan, CHENYasong, YANGMin. Methane production from anaerobic fermentation of straw enhanced by biological pretreatment with white-rot fungi[J]. Journal of Agri-Environment Science, 2007, 1(5):1968-1972. | |
43 | FERRAROA, DOTTORINIG, MASSINIG, et al. Combined bioaugmentation with anaerobic ruminal fungi and fermentative bacteria to enhance biogas production from wheat straw and mushroom spent straw[J]. Bioresource Technology, 2018, 260: 364-373. |
44 | NKEMKAV N, GILROYEDB, YANKEJ, et al. Bioaugmentation with an anaerobic fungus in a two-stage process for biohydrogen and biogas production using corn silage and cattail[J]. Bioresource Technology, 2015, 185: 79-88. |
45 | MARTIN-RYALSA, SCHIDEMANL, LIP, et al. Improving anaerobic digestion of a cellulosic waste via routine bioaugmentation with cellulolytic microorganisms[J]. Bioresource Technology, 2015, 189: 62-70. |
46 | OZBAYRAME G, AKYOLÇAĞRI, INCEB, et al. Rumen bacteria at work: bioaugmentation strategies to enhance biogas production from cow manure[J]. Journal of Applied Microbiology, 2017, 124(2):491-502. |
47 | OZBAYRAME G , KLEINSTEUBES , NIKOLAUSZM , et al. Bioaugmentation of anaerobic digesters treating lignocellulosic feedstock by enriched microbial consortia[J]. Engineering in Life Sciences, 2017.18(7): 440-446. |
48 | CHENJ L, ORTIZR, STEELET W J, et al. Toxicants inhibiting anaerobic digestion: a review[J]. Biotechnology Advances, 2014, 32(8):1523-1534. |
49 | WERNERF, WANGX M, GABAUERW G, et al. Tackling ammonia inhibition for efficient biogas production from chicken manure: status and technical trends in Europe and China[J]. Renewable and Sustainable Energy Reviews, 2018, 97: 186-199. |
50 | CHENS , HEJ , WANGH , et al. Microbial responses and metabolic pathways reveal the recovery mechanism of an anaerobic digestion system subjected to progressive inhibition by ammonia[J]. Chemical Engineering Journal, 2018, 350: 312-323. |
51 | ZHUX, TREUL, KOUGIASP G, et al. Converting mesophilic upflow sludge blanket (UASB) reactors to thermophilic by applying axenic methanogenic culture bioaugmentation[J]. Chemical Engineering Journal, 2017, 332: 508-516. |
52 | FOTIDISI A, TREUL, ANGELIDAKII. Enriched ammonia-tolerant methanogenic cultures as bioaugmentation inocula in continuous biomethanation processes[J]. Journal of Cleaner Production, 2017, 166: 1305-1313. |
53 | CAPSON-TOJOG, ROUEZM, CRESTM, et al. Food waste valorization via anaerobic processes: a review[J]. Reviews in Environmental Science and Bio/Technology, 2016, 15(3): 499-547. |
54 | ALCOCERB M S. The effect of pH on microbial interactions in the presence of propionic acid in anaerobic digestion[D]. Newcastle, UK:University of Newcastle, 1988. |
55 | LIY, ZHANGY, SUNY, et al. The performance efficiency of bioaugmentation to prevent anaerobic digestion failure from ammonia and propionate inhibition[J]. Bioresource Technology, 2017, 231:94-100 |
56 | SCHAUER-GIMENEZA E, ZITOMERD H, MAKIJ S, et al. Bioaugmentation for improved recovery of anaerobic digesters after toxicant exposure[J]. Water Research, 2010, 44(12):3555-3564. |
57 | TIANH, FOTIDISI A, MANCINIE, et al. Different cultivation methods to acclimatise ammonia-tolerant methanogenic consortia[J]. Bioresour Technol., 2017, 232:1-9. |
58 | CIRNED G, LOVISAB, ALVESM, et al. Effects of bioaugmentation by an anaerobic lipolytic bacterium on anaerobic digestion of lipid‐rich waste[J]. Journal of Chemical Technology & Biotechnology, 2006, 81(11):1745-1752. |
59 | ADULKART V, RATHODV K. Ultrasound assisted enzymatic pre-treatment of high fat content dairy wastewater[J]. Ultrasonics Sonochemistry, 2014, 21(3):1083-1089. |
60 | CHARESTA, BISAILLONJ G, LÉPINEF, et al. Removal of phenolic compounds from a petrochemical effluent with a methanogenic consortium[J]. Canadian Journal of Microbiology, 1999, 45(3):235-241. |
61 | JUSTICIA-LEONS D, HIGGINSS, MACKE E, et al. Bioaugmentation with distinct Dehalobacter strains achieves chloroform detoxification in microcosms[J]. Environmental Science & Technology, 2014, 48(3):1851-1858. |
62 | GROSTERNA , EDWARDSE A . A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes[J]. Applied & Environmental Microbiology, 2006, 72(12):7849-7856. |
63 | SCHEUTZC, DURANTN D, BROHOLMM M. Effects of bioaugmentation on enhanced reductive dechlorination of 1,1,1-trichloroethane in groundwater: a comparison of three sites[J]. Biodegradation, 2014, 25(3): 459-478. |
64 | GANR , GEM M , LIUY D , et al. Effect of activated carbon addition on the anaerobic fermentation of corn straw in mesophilic and thermophilic conditions[J]. Environmental Science, 2017,38(6):2607-2616. |
65 | VENGLOVSKYJ, SASAKOVAN, VARGOVAM, et al. Evolution of temperature and chemical parameters during composting of the pig slurry solid fraction amended with natural zeolite[J]. Bioresource Technology, 2005, 96(2):181-189. |
66 | KOTSOPOULOST A, KARAMANLISX, DOTASD, et al. The impact of different natural zeolite concentrations on the methane production in thermophilic anaerobic digestion of pig waste[J]. Biosystems Engineering, 2008, 99(1):105-111. |
67 | MILÁNZ, MONTALVOS, POZASC L , et al. The effects of hydraulic loading and NaCl concentrations on the regeneration of exhausted homoionic natural zeolite[J]. Environmental Letters, 2011, 46(6): 596-600. |
68 | WEIßS, ZANKELA, LEBUHNM, et al. Investigation of mircroorganisms colonising activated zeolites during anaerobic biogas production from grass silage[J]. Bioresource Technology, 2011, 102(6):4353-4359. |
69 | WEIßS, SOMITSCHW, KLYMIUKI, et al. Comparison of biogas sludge and raw crop material as source of hydrolytic cultures for anaerobic digestion[J]. Bioresource Technology, 2016, 207: 244-251. |
70 | SINGHB P , HATTONB J , SINGHB , et al. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils[J]. Journal of Environment Quality, 2010, 39(4):1224. |
71 | 潘君廷, 邱凌, HASSANEINA A M , et al. 生物炭添加对鸡粪厌氧消化产气特性的影响[J]. 农业机械学报, 2014, 45(12): 229-233. |
PANJunting, QIULing, HASSANEINA A M, et al. Orthogonal experiment on biogas production characteristics of chicken manure with biochar[J]. Transactions of Chineses Society for Agricultural Machinery, 2014, 45(12): 229-233. | |
72 | 王粟, 裴占江, 史风梅,等 生物炭对餐厨垃圾厌氧消化的影响[J]. 安徽农业科学, 2017, 45(4): 55-57. |
WANGSu, PEIZhanjiang, SHIFengmei, et al. Effect of biochar on anaerobic digestion of kitchen waste[J]. Journal of Anhui Agricultural Sciences, 2017, 45(4): 55-57. | |
73 | 潘君廷. 生物炭介导的鸡粪厌氧消化特性及机理研究[D]. 西安:西北农林科技大学,2016. |
PANJunting. Study on characteristics and mechanism of anaerobic digestion of chicken manure mediated by biocharcoal[D]. Xi’an:Northwest A&F University, 2016. | |
74 | 李建安. 生物强化技术在生物质沼气制备过程中的应用及研究进展[J]. 微生物学通报, 2018, 45(7):1588-1596. |
LIJian’an. Application and research progress of bioaugmentation technology in biomass biogas production[J]. Microbiology China,2018, 45(7):1588-1596. | |
75 | 田沈, 赵军, 曹亚莉, 等. 产甲烷菌固定化新方法及其甲烷化特性[J]. 太阳能学报, 2002, 23(6):778-781. |
TIANShen, ZHAOJun, CAOYali, et al. A new method for methanogen immobilization and its characteristics of methanozation[J]. Acta Energiae Solaris Sinica, 2002, 23(6):778-781. | |
76 | CAVALEIROA J , SOUSAD Z , ALVESM M . Methane production from oleate: assessing the bioaugmentation potential of Syntrophomonas zehnderi[J]. Water Research, 2010, 44(17):4940-4947. |
77 | 田沈, 杨静, 张伟, 等. 固定化甲烷八叠球菌提高甲烷化作用研究[J]. 应用与环境生物学报, 1999, 5(s1): 80-83. |
TIANShen, YANGJing, ZHANGWei, et al. Study on improving methanation by immobilized methanococcus octopus[J]. Chinese Journal of Applied and Environmental Biology, 1999, 5(s1): 80-83. | |
78 | MARTIN-RYALSA. Evaluating the potential for improving anaerobic digestion of cellulosic waste via routine bioaugmentation and alkaline pretreatment[D]. Twin City, US: University of Illinois at Urbana-Champaign , 2012. |
[1] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[2] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[3] | 庄捷, 薛锦辉, 赵斌成, 张文艺. 猪粪厌氧消化进程中重金属与腐殖质的有机结合机制[J]. 化工进展, 2023, 42(6): 3281-3291. |
[4] | 孟晓山, 汤子健, 陈琳, 呼和涛力, 周政忠. 厌氧消化系统酸化预警及调控技术研究进展[J]. 化工进展, 2023, 42(3): 1595-1605. |
[5] | 祝佳欣, 朱雯喆, 徐俊, 谢靖, 王文标, 谢丽. 基于导电材料强化抗生素胁迫厌氧消化的研究进展[J]. 化工进展, 2023, 42(2): 1008-1019. |
[6] | 程荣, 邓子祺, 夏锦程, 李江, 石磊, 郑祥. 光催化系统灭活微生物气溶胶的研究进展[J]. 化工进展, 2023, 42(2): 957-968. |
[7] | 池伟利, 杨宏. 厌氧氨氧化包埋填料处理稀土尾矿废水的中试脱氮和优化[J]. 化工进展, 2023, 42(1): 506-516. |
[8] | 刘亚利, 张宏伟, 康晓荣. 微塑料对污泥厌氧消化的影响和机理[J]. 化工进展, 2022, 41(9): 5037-5046. |
[9] | 范娇, 谢学辉, 秦艳, 陈小光, 方英荣, 杨珊珊, 赵江贵, 莫浩楠, 郑航蜜, 刘娜, 张庆云, 宋新山. 功能菌群DDMZ1共代谢脱色降解不同结构染料差异效应[J]. 化工进展, 2022, 41(8): 4449-4463. |
[10] | 邵明帅, 张超, 吴华南, 王宁, 陈钦冬, 徐期勇. 水热耦合厌氧消化技术处理餐厨垃圾沼渣沼液及工艺能耗分析[J]. 化工进展, 2022, 41(5): 2733-2742. |
[11] | 郑小梅, 林茹晶, 周文静, 徐泠, 张洪宁, 张昕颖, 谢丽. 微生物电解池辅助CO2甲烷化阴极材料的研究进展[J]. 化工进展, 2022, 41(5): 2476-2486. |
[12] | 阮敏, 孙宇桐, 黄忠良, 李辉, 张轩, 吴希锴, 赵成, 姚世蓉, 张拴保, 张巍, 黄兢. 污泥预处理-厌氧消化体系的能源经济性评价[J]. 化工进展, 2022, 41(3): 1503-1516. |
[13] | 汪润民, 张晓东, 徐成华, 于丹丹, 余冉. 高效重质石油降解菌群构建及降解性能评价[J]. 化工进展, 2022, 41(10): 5653-5660. |
[14] | 潘云飞, 唐正, 彭欣怡, 高品. 石油烃污染土壤微生物修复技术研究现状及进展[J]. 化工进展, 2021, 40(8): 4562-4572. |
[15] | 闫雪倩, 裴向军, 杜杰, 米晓慧, 白琳嵚, 马蕊, 张明宽, 钱进. Bi2O2CO3/Fe3O4磁性复合物在环境污染治理领域中的应用[J]. 化工进展, 2021, 40(6): 3515-3525. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |