[1] LU L, REN N, ZHAO X, et al. Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells[J]. Energ. Environ. Sci., 2011,4(4):1329-1336.
[2] ZHANG Y B, ZHOU J, XU Q M, et al. Exogenous cofactors for the improvement of bioremoval and biotransformation of sulfamethoxazole by Alcaligenes faecalis[J]. Science of the Total Environment, 2016, 565:547.
[3] 许琳科,俞悦,阎宁,等. 紫外辐射加速磺胺甲(口恶) 唑(SMX)的生物降解[J]. 华东理工大学学报(自然科学版), 2011(5):582-586. XU L K, YU Y, YAN N, et al. UV irradation for accelerated biodegradation of sulfamethoxazole (SMX)[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2011(5):582-586.
[4] TERNES T A, JOSS A, SIEGRIST H. Scrutinizing pharmaceuticals and personal care products in wastewater treatment[J]. Environ. Sci. Technol., 2004, 38(20):392A.
[5] STOOB K, SINGER H P, STETTLER S, et al. Exhaustive extraction of sulfonamide antibiotics from aged agricultural soils using pressurized liquid extraction[J]. Journal of Chromatography A, 2006, 1128(1):1-9.
[6] JACOBSEN A M, HALLINGSORENSEN B, INGERSLEV F, et al. Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurised liquid extraction, followed by solid-phase extraction and liquid chromatographytandem mass spectrometry[J]. Journal of Chromatography A, 2004, 1038(1):157-170.
[7] WANG Q, GUO M, YATES S R. Degradation kinetics of manure-derived sulfadimethoxine in amended soil[J]. Journal of Agricultural & Food Chemistry, 2006, 54(1):157-163.
[8] MENG Z, SHI Z, LIANG S, et al. Residues investigation of fluoroquinolones and sulphonamides and their metabolites in bovine milk by quantification and confirmation using ultra-performance liquid chromatography-tandem mass spectrometry[J]. Food Chemistry, 2015, 174:597-605.
[9] STOREY J M, CLARK S B, JOHNSON A S, et al. Analysis of sulfonamides, trimethoprim, fluoroquinolones, quinolones, triphenylmethane dyes and methyltestosterone in fish and shrimp using liquid chromatography-mass spectrometry[J]. Journal of Chromatography B, 2014, 972:38-47.
[10] CHEN Y, ZHOU J L, CHENG L, et al. Sediment and salinity effects on the bioaccumulation of sulfamethoxazole in zebrafish (Danio rerio)[J]. Chemosphere, 2017, 180:467-475.
[11] HAN X M, HU H W, SHI X Z, et al. Impacts of reclaimed water irrigation on soil antibiotic resistome in urban parks of Victoria, Australia[J]. Environmental Pollution, 2016, 211:48-57.
[12] JOHNSON T A, STEDTFELD R D, WANG Q, et al. Clusters of antibiotic resistance genes enriched together stay together in swine agriculture[J]. MBio, 2016, 7(2):e02214-e02215.
[13] 王敏,俞慎,洪有为,等. 5种典型滨海养殖水体中多种类抗生素的残留特性[J]. 生态环境学报, 2011(5):934-939. WANG M, YU S, HONG Y W, et al. Residual characterization of multicategorized antibiotics in five typical aquaculture waters[J]. Ecology and Environmental Sciences, 2011(5):934-939.
[14] 阮悦斐,陈继淼,郭昌胜,等. 天津近郊地区淡水养殖水体的表层水及沉积物中典型抗生素的残留分析[J]. 农业环境科学学报, 2011(12):2586-2593. RUAN Y F, CHEN J M, GUO C S, et al. Distribution characteristics of typical antiibiotics in surface water and sediments from fresh water aquaculture water in Tianjin suburban areas, China[J]. Journal of Agro-Environment Science, 2011(12):2586-2593.
[15] GOBEL A, MCARDELL C S, SUTER M J-F, et al. Trace determination of macrolide and sulfonamide antimicrobials, a human sulfonamide metabolite, and trimethoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry[J]. Analytical Chemistry, 2004, 76(16):4756-4764.
[16] BUSH K, COURVALIN P, DANTAS G, et al. Tackling antibiotic resistance[J]. Nature Reviews Microbiology, 2011, 9(12):894-896.
[17] BERENDONK T U, MANAIA C M, MERLIN C, et al. Tackling antibiotic resistance:the environmental framework[J]. Nature Reviews Microbiology, 2015, 13(5):310.
[18] PRICE L B, KOCH B J, HUNGATE B A. Ominous projections for global antibiotic use in food-animal production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(18):5554-5555.
[19] XU W H, ZHANG G, ZOU S C, et al. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Environmental Pollution, 2007, 145(3):672-679.
[20] WITTE B D, DEWULF J, DEMEESTERE K, et al. Ozonation and advanced oxidation by the peroxone process of ciprofloxacin in water[J]. J. Hazard Mater., 2009, 161(2):701-708.
[21] GAN S, LAU E V, NG H K. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs)[J]. J. Hazard Mater., 2009, 172(2):532-549.
[22] DE LC N, GIMENEZ J, ESPLUGAS S, et al. Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge[J]. Water Res., 2012, 46(6):1947-1957.
[23] SU S, GUO W, YI C, et al. Degradation of amoxicillin in aqueous solution using sulphate radicals under ultrasound irradiation[J]. Ultrasonics Sonochemistry, 2012, 19(3):469-474.
[24] GOMEZ-PACHECO C V, SANCHEZ-P M, RIVERA-UTRILLA J, et al. Tetracycline removal from waters by integrated technologies based on ozonation and biodegradation[J]. Chem. Eng. J., 2011, 178(1):115-121.
[25] LI Y H, LIU L F, YANG F L. Destruction of tetracycline hydrochloride antibiotics by FeOOH/TiO2 granular activated carbon as expanded cathode in low-cost MBR/MFC coupled system[J]. J. Membrane Sci., 2017, 525:202-209.
[26] ZHANG S, SONG H L, YANG X L, et al. Dynamics of antibiotic resistance genes in microbial fuel cell-coupled constructed wetlands treating antibiotic-polluted water[J]. Chemosphere, 2017, 178:548-555.
[27] GOBEL A, MCARDELL C S, JOSS A, et al. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies[J]. Science of the Total Environment, 2007, 372(2/3):361-371.
[28] HUANG M, TIAN S, CHEN D, et al. Removal of sulfamethazine antibiotics by aerobic sludge and an isolated Achromobacter sp. S-3[J]. Journal of Environmental Sciences, 2012, 24(9):1594-1599.
[29] ZHANG J, BAI Y, FAN Y, et al. Improved bio-hydrogen production from glucose by adding a specific methane inhibitor to microbial electrolysis cells with a double anode arrangement[J]. Journal of Bioscience and Bioengineering, 2016, 122(4):488-493.
[30] ZHUANGL, CHEN Q, ZHOU S G, et al. Methanogenesis control using 2-bromoethanesulfonate for enhanced power recovery from sewage sludge in air-cathode microbial fuel cells[J]. Int. J. Electrochem. Sci., 2012, 7:6512-6523.
[31] QIANG L Z, SHI L, PENG G, et al. High-throughput sequencing technology and its application[J]. Journal of Northeast Agricultural University(English Edition), 2014, 21(3):84-96.
[32] REUTER J A, SPACEK D V, SNYDER M P. High-throughput sequencing technologies[J]. Molecular Cell, 2015, 58(4):586-597.
[33] DI J M, BAO Y, GLOOR G B, et al. High throughput sequencing methods and analysis for microbiome research[J]. Journal of Microbiological Methods, 2013, 95(3):401-414.
[34] MURPHY M P, NIEDZIELA D A, KEANE O M. EHS matrix incubated in media containing penicillin retains sufficient concentrations of antibiotic to inhibit growth of susceptible microorganisms[J]. Journal of Microbiological Methods, 2017, 139(Supplement C):103-106.
[35] FEDORKA-CRAY P J. Microorganisms and resistance to antibiotics, the ubiquity of antibiotic resistance by microorganisms[M]//Encyclopedia of Meat Sciences. Second Edition. Oxford:Academic Press, 2014:412-416.
[36] CERRILLO M, VINAS M, BONMATI A. Unravelling the active microbial community in a thermophilic anaerobic digester-microbial electrolysis cell coupled system under different conditions[J]. Water Res., 2017, 110(Supplement C):192-201. |