1 |
CUI W J, LIU G L, ZENG C P, et al. Improved hydrogen production in the single-chamber microbial electrolysis cell with inhibition of methanogenesis under alkaline conditions[J]. RSC Advances, 2019, 9(52): 30207-30215.
|
2 |
LI W, LIU G H, JIN D L, et al. Hydrogen evolution reaction mechanism on 2H-MoS2 electrocatalyst[J]. Applied Surface Science, 2019, 498: 143869.
|
3 |
TAN S M, AMBROSI A, SOFER Z, et al. Pristine basal-and edge-plane-oriented molybdenite MoS2 exhibiting highly anisotropic properties[J]. Chemistry, 2015, 21(19): 7170-7178.
|
4 |
JARAMILLO T F, JØRGENSEN K P, BONDE J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007, 317(5834): 100-102.
|
5 |
KONG D S, WANG H T, CHA J J, et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers[J]. Nano Letters, 2013, 13(3), 1341-1347.
|
6 |
SU C, XIANG J Y, WEN F S, et al. Microwave synthesized three-dimensional hierarchical nanostructure CoS2/MoS2 growth on carbon fiber cloth: a bifunctional electrode for hydrogen evolution reaction and supercapacitor[J]. Electrochimica Acta, 2016, 212: 941-949.
|
7 |
HUSSAIN S, VIKRAMAN D, TRUONG L, et al. Facile and cost-effective growth of MoS2 on 3D porous graphene-coated Ni foam for robust and stable hydrogen evolution reaction[J]. Journal of Alloys and Compounds, 2019, 788: 267-276.
|
8 |
CHI J Q, GAO W K, LIN J H, et al. N, P dual-doped hollow carbon spheres supported MoS2 hybrid electrocatalyst for enhanced hydrogen evolution reaction[J]. Catalysis Today, 2019, 330: 259-267.
|
9 |
QIAO J H, SONG F F, HU J G, et al. Ultrathin MoSSe alloy nanosheets anchored on carbon nanotubes as advanced catalysts for hydrogen evolution[J]. International Journal of Hydrogen Energy, 2019, 44(31): 16110-16119.
|
10 |
ZHAO Y, FAN L, YANG D H, et al.Comparative study of electrochemical performance and microbial flora in microbial fuel cells by using three kinds of substrates[J].Chemical Research in Chinese Universities, 2019, 35(2): 292-298.
|
11 |
FU G T, CUI Z M, CHEN Y F, et al. Ni3Fe-N doped carbon sheets as a bifunctional electrocatalyst for air cathodes[J]. Advanced Energy Materials, 2017, 7(1): 1601172.
|
12 |
BHARDWAJ M, BALASUBRAMANIAM R. Enhancement of uncoupled nonlinear equations method for determining kinetic parameters in case of hydrogen evolution reaction after dropping two assumptions[J]. International Journal of Hydrogen Energy,2009, 34(4): 1655-1663.
|
13 |
LASIA A. Mechanism and kinetics of the hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2019, 44(36): 19484-19518.
|
14 |
HAO Y M, NAKAJIMA H, INADA A, et al. Overpotentials and reaction mechanism in electrochemical hydrogen pumps[J]. Electrochimica Acta, 2019, 301: 274-283.
|
15 |
SHIBLI S M A, AMEEN SHA M, ANISHA B L, et al. Effect of phosphorus on controlling and enhancing electrocatalytic performance of Ni-P-TiO2-MnO2 coatings[J]. Journal of Electroanalytical Chemistry, 2018, 826: 104-116.
|
16 |
ZHANG Z Y, LIU S S, XIAO J, et al. Fiber-based multifunctional nickel phosphide electrodes for flexible energy conversion and storage[J]. Journal of Materials Chemistry A, 2016, 4(24): 9691-9699.
|
17 |
WU C, YANG Y J, DONG D, et al. In situ coupling of CoP polyhedrons and carbon nanotubes as highly efficient hydrogen evolution reaction electrocatalyst[J]. Small, 2017, 13(15): 1602873.
|
18 |
ZHOU W W, ZHOU Y S, WEI Q, et al. Continuous synthesis of mesoporous Y zeolites from normal inorganic aluminosilicates and their high adsorption capacity for dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT)[J]. Chemical Engineering Journal, 2017, 330: 605-615.
|
19 |
MA L, XU L M, XU X Y, et al. Synthesis and characterization of flower-like MoS2 microspheres by a facile hydrothermal route[J]. Materials Letters, 2009, 63(23): 2022-2024.
|
20 |
LI M, WANG D, LI J H, et al. Facile hydrothermal synthesis of MoS2 nano-sheets with controllable structures and enhanced catalytic performance for anthracene hydrogenation[J]. RSC Advances, 2016, 6(75): 71534-71542.
|
21 |
BENCK J D, CHEN Z B, KURITZKY L Y, et al. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity[J]. ACS Catalysis, 2012, 2(9): 1916-1923.
|
22 |
HU W H, SHANG X, HAN G Q, et al. MoSx supported graphene oxides with different degree of oxidation as efficient electrocatalysts for hydrogen evolution[J]. Carbon, 2016, 100: 236-242.
|
23 |
YAN Y, GE X, LIU Z, et al. Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction[J]. Nanoscale, 2013, 5(17): 7768-7771.
|
24 |
ZHANG Z, HAN Y, XIAO F S, et al. Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures[J]. Journal of the American Chemical Society, 2001, 123(21): 5014-5021.
|
25 |
HUANG Y, WANG K, DONG D, et al. Synthesis of hierarchical porous zeolite NaY particles with controllable particle sizes[J]. Microporous and Mesoporous Materials, 2010, 127(3): 167-175.
|
26 |
LI Z, MA J, ZHOU Y, et al. Synthesis of sulfur-rich MoS2 nanoflowers for enhanced hydrogen evolution reaction performance[J]. Electrochimica Acta, 2018, 283: 306-312..
|
27 |
LIU Y, YU G, LI G D, et al. Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites[J]. Angewandte Chemie: International Edition, 2015, 54(37): 10752-10757.
|